International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 18 , Issue 1 , PP: 127-143, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

Hyers-Ulam-Rassias Stability for Functional Equation in Neutrosophic Normed Spaces

M. Jeyaraman 1 * , A.N. Mangayarkkarasi 2 , V. Jeyanthi 3 , R. Pandiselvi 4

  • 1 Alagappa University, Karaikudi, Tamil Nadu, India - (jeya.math@gmail.com)
  • 2 Department of Mathematics, Nachiappa Swamigal Arts & Science College, Karaikudi. Affiliated to Alagappa University, Karaikudi, Tamilnadu, India. - (murugappan.mangai@gmail.com)
  • 3 Government Arts College for Women, Sivagangai. Affiliated to Alagappa University, Karaikudi, Tamilnadu, India. - (jeykaliappa@gmail.com)
  • 4 PG and Research Department of Mathematics, The Madura College, Madurai 625011, Tamilnadu, India - (rpselvi@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.180111

    Received: September 01, 2021 Accepted: January 19, 2022
    Abstract

    In Neutrosophic Normed spaces, we investigate a unique quadratic function and a unique additive quadratic function of the Hyers-Ulam-Rassias stability for the functional equation  which is said to be a functional equation associated with inner products

     

    space.

    Keywords :

    Hyers-Ulam-Rassias stability, Functional equation, Neutrosophic, Normed Space

    References

    [1]       T. M. Rassias, “New characterizations of inner product spaces,” Bulletin des Sciences Mathematiques, vol. 108, no. 1, pp. 95-99, 1984.

    [2]       C. Park, J. S. Huh, W. J. Min, D. H. Nam, and S. H. Roh, “Functional equations associated with inner product spaces,” The Journal of Chungcheong Mathematical Society, vol. 21, pp. 455-466, 2008.

    [3]       C. Park, W. G. Park, and A. Najati, “Functional equations related to inner product spaces,” Abstract and Applied Analysis, vol. 2009, Article ID 907121, 11 pages, 2009.

    [4]       A. Najati and T. M. Rassias, “Stability of a mixed functional equation in several variables on Banach modules,” Nonlinear Analysis. Theory, Methods & Applications., vol. 72, no. 3-4, pp. 1755-1767, 2010.

    [5]       C. Park, “Fuzzy stability of a functional equation associated with inner product spaces,” Fuzzy Sets and Systems, vol. 160, no. 11, pp. 1632-1642, 2009.

    [6]       S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, NY, USA, 1964.

    [7]       D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222-224, 1941.

    [8]       T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical Society of Japan, vol. 2, pp. 64-66, 1950.

    [9]       T. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297-300, 1978.

    [10]    R. P. Agarwal, B. Xu, and W. Zhang, “Stability of functional equations in single variable,” Journal of Mathematical Analysis and Applications, vol. 288, no. 2, pp. 852-869, 2003.

    [11]    G. L. Forti, “Hyers-Ulam stability of functional equations in several variables,” Aequationes Mathematicae, vol. 50, no. 1-2, pp. 143-190, 1995.

    [12]    P. Gavrut ¸a, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431-436, 1994.

    [13]    D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, Switzerland, 1998.¨

    [14]    S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Fla, USA, 2001.

    [15]    S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, vol. 48, Springer, New York, NY, USA, 2011.

    [16]    P. Kannappan, Functional Equations and Inequalities with Applications, Springer, New York, NY, USA, 2009.

    [17]    T. M. Rassias, “On the stability of functional equations and a problem of Ulam,” Acta Applicandae Mathematicae, vol. 62, no. 1, pp. 23-130, 2000.

    [18]    T. M. Rassia, Functional Equations, Inequalities and Applications, Kluwer Academic, Dordrecht, The Netherlands, 2003.

    [19]    A. K. Mirmostafaee, M. Mirzavaziri, and M. S. Moslehian, “Fuzzy stability of the Jensen functional equation,” Fuzzy Sets and Systems, vol. 159, no. 6, pp. 730-738, 2008.

    [20]    A. K. Mirmostafaee and M. S. Moslehian, “Fuzzy versions of Hyers-Ulam-Rassias theorem,” Fuzzy Sets and Systems, vol. 159, no. 6, pp. 720-729, 2008.

    [21]    A. K. Mirmostafaee and M. S. Moslehian, “Fuzzy almost quadratic functions,” Results in Mathematics, vol. 52, no. 1-2, pp. 161-177, 2008.

    [22]    A. K. Mirmostafaee and M. S. Moslehian, “Fuzzy approximately cubic mappings,” Information Sciences, vol. 178, no. 19, pp. 3791-3798, 2008.

    [23]    B. Schweizer and A. Sklar, “Statistical metric spaces,” Pacific Journal of Mathematics, vol. 10, pp. 313334, 1960.

    [24]    F. Smarandache, Neutrosophy. Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning. Ann Arbor, Mi.chigan, USA. (1998).

    [25]    F. Smarandache, A unifying field in logics: Neutrosophic logic Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics, Phoenix: Xiquan. (2003).

    [26]    F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets. International Journal of Pure and Applied Mathematics 24(2005), 287 - 297.

    [27]    F. Smarandache, Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability, sitech & educational. Columbus: Craiova, (2013).

     

    [28]    L. A.Zadeh, Fuzzy Sets, Inform. And Control, 1965, Vol. 8, 338-353.

    Cite This Article As :
    Jeyaraman, M.. , Mangayarkkarasi, A.N.. , Jeyanthi, V.. , Pandiselvi, R.. Hyers-Ulam-Rassias Stability for Functional Equation in Neutrosophic Normed Spaces. International Journal of Neutrosophic Science, vol. , no. , 2022, pp. 127-143. DOI: https://doi.org/10.54216/IJNS.180111
    Jeyaraman, M. Mangayarkkarasi, A. Jeyanthi, V. Pandiselvi, R. (2022). Hyers-Ulam-Rassias Stability for Functional Equation in Neutrosophic Normed Spaces. International Journal of Neutrosophic Science, (), 127-143. DOI: https://doi.org/10.54216/IJNS.180111
    Jeyaraman, M.. Mangayarkkarasi, A.N.. Jeyanthi, V.. Pandiselvi, R.. Hyers-Ulam-Rassias Stability for Functional Equation in Neutrosophic Normed Spaces. International Journal of Neutrosophic Science , no. (2022): 127-143. DOI: https://doi.org/10.54216/IJNS.180111
    Jeyaraman, M. , Mangayarkkarasi, A. , Jeyanthi, V. , Pandiselvi, R. (2022) . Hyers-Ulam-Rassias Stability for Functional Equation in Neutrosophic Normed Spaces. International Journal of Neutrosophic Science , () , 127-143 . DOI: https://doi.org/10.54216/IJNS.180111
    Jeyaraman M. , Mangayarkkarasi A. , Jeyanthi V. , Pandiselvi R. [2022]. Hyers-Ulam-Rassias Stability for Functional Equation in Neutrosophic Normed Spaces. International Journal of Neutrosophic Science. (): 127-143. DOI: https://doi.org/10.54216/IJNS.180111
    Jeyaraman, M. Mangayarkkarasi, A. Jeyanthi, V. Pandiselvi, R. "Hyers-Ulam-Rassias Stability for Functional Equation in Neutrosophic Normed Spaces," International Journal of Neutrosophic Science, vol. , no. , pp. 127-143, 2022. DOI: https://doi.org/10.54216/IJNS.180111