## International Journal of Neutrosophic Science

##### Journal DOI

https://doi.org/10.54216/IJNS

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 18 , Issue 1 , PP: 82-98, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

### Decision Making Applications for Business Based on Generalized Set-Valued Neutrosophic Quadruple Sets

Nuh Okumus 1 * , Merve Sena Uz 2

• 1 Faculty of Economics and Administrative Sciences, Hasan Kalyoncu University, Gaziantep 27410, Turkey - (okumus27@gmail.com)
• 2 Department of Mathematics, Gaziantep University, Gaziantep27310-Turkey - (evrem_anes@yahoo.com)
• Doi: https://doi.org/10.54216/IJNS.180108

Received Aug. 28, 2021 Accepted: Jan 13, 2022
##### Abstract

In this article, an algorithm is introduced that makes it easier for us to choose the right operator in order to overcome the possible problems faced by a business, small or huge. This algorithm is based on the Euclidean similarity measure on generalized set-valued neutrosophic quadruple numbers and sets. By using this algorithm, one can calculate the similarity of the criteria between the requested and already owned skills of the operators in general. By this means, one can make the right choice to hire the right operator without giving preferential treatment or personal favors. The closer the similarity value is to 1, the more accurate our selection will be.

##### Keywords :

neutrosophic set ,   , generalized set valued neutrosophic quadruple numbers , generalized Euclid similarity measure , decision making, business

##### References

[1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, vol 8(3), 338-353, 1965

[2] Atanassov T. K. Intuitionistic fuzzy sets, Fuzzy Sets Syst, vol 20, 87–96, 1986

[3] Smarandache, F. “A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic” American Research Press: Rehoboth, DE, USA, 1999,

[4] Borzooei, R. A., Jun, Y. B., Takallo, M. M., & Ahn, S. S. “Positive implicative neutrosophic quadruple BCK-algebras and ideals” New Mathematics and Natural Computation (NMNC), vol 17(02), pp. 403-423, 2021

[5] Şahin, M., & Kargın, A. “Neutrosophic triplet Lie Algebra” Neutrosophic Triplet Research, vol 1(6), pp.           68-78, 2019

[6] Şahin M. and Kargın A. “Neutrosophic triplet partial inner product space” Neutrosophic Triplet Structures, vol 1, pp. 10-21, 2019

[7] Saqlain, M., Jafar, N., Moin, S., Saeed, M., & Broumi, S. “Single and multi-valued neutrosophic hypersoft set and tangent similarity measure of single valued neutrosophic hyper soft sets” Neutrosophic Sets and Systems, vol 32(1), pp. 317-329, 2020

[8] Şahin, M., Kargın, A., & Smarandache, F. “Neutrosophic triplet topology” Neutrosophic Triplet Research, vol 1(4), pp. 43-54, 2019

[9] Tan, R. P., & Zhang, W. D. Decision-making method based on new entropy and refined single-valued neutrosophic sets and its application in typhoon disaster assessment. Applied Intelligence, vol 51(1), pp. 283-307, 2021

[10] Kargın, A., Dayan, A., & Şahin, N. M. “Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences” Neutrosophic Sets and Systems, vol 40(1), pp. 4, 2021

[11] Şahin, S., Kargın, A., & Yücel, M. “Hausdorff Measures on Generalized Set Valued Neutrosophic Quadruple Numbers and Decision Making Applications for Adequacy of Online Education” Neutrosophic Sets and Systems, vol 40, pp. 86-116, 2021

[12] Aslan, C., Kargın, A., & Şahin, M. “Neutrosophic modeling of Talcott Parsons’s action and decision-making applications for it” Symmetry, vol. 12(7), pp. 1166, 2020

[13] F. Smarandache and M. Ali “Neutrosophic triplet group” Neural Computing and Applications, vol 29, pp. 595-601, (2016)

[14] Kargın, A., Dayan A., Yıldız, İ., Kılıç, A. “Neutrosophic Triplet m – Banach   Space ” Neutrosophic Set and Systems, vol 38, pp. 383 – 398, 2020

[15] Şahin, M., Kargın, A., Uz, M. S., & Kılıç, A. “Neutrosophic Triplet Bipolar Metric Spaces” Quadruple Neutrosophic Theory And Applications, vol 1, pp. 150, 2020

[16] Smarandache F.  “Neutrosophic quadruple numbers, refined neutrosophic quadruple numbers, absorbance law, and the multiplication of neutrosophic quadruple numbers” Neutrosophic Set and Systems, vol 10, pp. 96 -98, 2014

[17] Şahin, M. Kargın, A., Uz, M. S. “Generalized Euclid Measures Based on Generalized Set Valued Neutrosophic Quadruple Numbers and Multi Criteria Decision Making Applications” Neutrosophic Sets and Systems, 47, 573-600, 2021

[18] Şahin, M., & Kargın, A. “Single valued neutrosophic quadruple graphs” Asian Journal of Mathematics and Computer Research, pp. 243-250, 2019

[19] Ibrahim, M., Agboola, A., Adeleke, E., & Akinleye, S. “On Neutrosophic, Quadruple Hypervector Spaces” International Journal of Neutrosophic Science (IJNS), vol 4, pp. 20-35, 2020

[20] Borzooei, R. A., Jun, Y. B., Takallo, M. M., & Ahn, S. S. “Positive implicative neutrosophic quadruple BCK-algebras and ideals” New Mathematics and Natural Computation (NMNC), vol 17(02), pp. 403-423, 2021

[21] Şahin, M., Kargın “A. Neutrosophic triplet groups based on set valued neutrosophic quadruple numbers” Neutrosophic Sets and Systems, vol 30, pp. 122 – 131, 2019

[22] Şahin, M., Kargın, A. “Generalized set – valued neutrosophic quadruple sets and numbers” In Quadruple Neutrosophic Theory and Applications. Pons Editions Brussels, Belgium, EU, vol 2, pp. 23 -40, 2020

[23] Kandasamy, V., Kandasamy, I., & Smarandache, F. “Neutrosophic quadruple vector spaces and their properties” Mathematics, vol7(8), pp. 758, 2019

[24] Ma, Y., Zhang, X., Smarandache, F., & Zhang, J. ”The Structure of Idempotents in Neutrosophic Rings and Neutrosophic Quadruple Rings” Symmetry, 11(10), 1254, 2019

[25] Rezaei, G. R., Jun, Y. B., & Borzooei, R. A. “Neutrosophic quadruple a-ideals” Neutrosophic Sets and Systems, vol 31(1), pp. 19, 2020

[26] Wang H., Smarandache F., Zhang Y. Q., Sunderraman R. “Single valued neutrosophic sets” Multispace Multistructure 2010, 4, 410 – 413, 2010

[27] Ye, S., Fu, J., & Ye, J. Medical diagnosis using distance-based similarity measures of single valued neutrosophic multisets. Neutrosophic Sets and Systems, vol 7, pp. 47-52, 2015