International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 16 , Issue 2 , PP: 101-110, 2021 | Cite this article as | XML | Html | PDF | Full Length Article

Bipolar neutrosophic soft generalized pre-continuous mappings

Arulpandy P 1 * , Trinita Pricilla M 2

  • 1 Department of Mathematics, KPR institute of engineering and technology, Coimbatore, India - (arulpandy002@gmail.com)
  • 2 Department of Mathematics, Nirmala College for Women, Coimbatore, India - (abishai kennet@yahoo.in)
  • Doi: https://doi.org/10.54216/IJNS.160205

    Received: August 29, 2021 Accepted: November 28, 2021
    Abstract

    In this study, new classes of continuous mappings in bipolar neutrosophic soft topological space, namely bipolar neutrosophic soft continuous mappings and bipolar neutrosophic soft generalized pre-continuous mappings has been introduced. Continuity mappings preserves topological structures such as closeness, openness, compactness and so on. Here, we have proposed and investigated various continuous mappings based on bipolar neutrosophic soft sets. Further, we investigated some of their properties and relations with other mappings with examples.

    Keywords :

    Bipolar neutrosophic soft set , BNSGP-continuous , BNSG-closed set , Neutrosophic set ,   , BNSS-topology

    References

    [1]. A.A.Salama and S.A.Alblow . Neutrosoph c set and neutrosoph c topolog cal spaces. IOSR Journal of Mathematics, 3(4):31–35, 2012.

    [2]. P. Arulpandy and M. Tr n ta Pr c lla. Some s m lar ty and entropy measurements of b polar neutrosoph c soft sets. Neutrosophic sets and systems, 25(1):174–194, 2019.

    [3]. Basumatary B. On some propert es of pl thogen c neutrosoph c hypersoft almost topolog cal group. Neutrosophic Sets and Systems, 43:169–179, 2021.

    [4]. Basumatary B. and Sa d Broum . Interval-valued tr angular neutrosoph c l near programm ng problem. International Journal of Neutrosophic Science, 10(2):105–115, 2020.

    [5]. Basumatary B and Wary N. A study on neutrosoph c b topolog cal group. Neutrosophic Sets and Systems, 38:164–178, 2020.

    [6]. Chang C.L. Fuzzy topolog cal spaces. Journal of Mathematical Analysis and Applications, 21:182–190, 1968.

    [7]. Mumtaz Al  Irfan Del  and Florent n Smarandache. B polar neutosoph c sets and the r appl cat ons based on mult -cr ter a dec s on mak ng problems. Proceedings of Int. Conf. on Advanced Mechatronic systems, pages 249–254, 2015.

    [8]. Atanassov K. Intu t on st c fuzzy sets. In VII ITKR’s Session; Publishing House: Sofia, Bulgaria, 1983.

    [9]. Zadeh LA. Fuzzy sets. Information and Control, 7(3):338–353, 1965.

    [10]. Norman Lev ne. Sem -open sets and sem -cont nu ty  n topolog cal spaces. Amer. Math. Monthly, 70:36–41, 1963.

    [11]. Norman Lev ne. General zed closed sets  n topology. Rend. Circ. Mat. Palermo, 19:89–96, 1970.

    [12]. D. Molodtsov. Soft set theory - f rst results. Computers and Mathematics with applications, 37(1):4–5, 19–31, 1999.

    [13]. D. D. Mwchahary and B. Basumatary. A note on neutrosoph c b topolog cal space. Neutrosophic Sets Systems, 33(1):134–144, 2020.

    [14]. Florent n Smarandache. A un fy ng f eld  n log cs. neutrosophy: Neutrosoph c probab l ty, set and log c, rehoboth. American Research Press, 1998.

    [15]. Florent n Smarandache. Neutrosophy: A new branch of ph losophy. Multiple valued logic: An international journal, 8:297–384, 2002.

    [16]. Florent n Smarandache. Extens on of soft set to hypersoft set, and then to pl thogen c hypersoft set. Neutrosophic Sets and Systems, 22:168–170, 2018.

    [17]. Syeda Tayyba Tehr m and R az Muhammad. A novel extens on of topsis to mcgdm w th b polar neutrosoph c soft topology. Journal of Intelligent and Fuzzy Systems, 37(4):5531–5549, 2019.

    [18]. uh n Bera and N rmal Kumar Mahapatra. Introduct on to neutrosoph c soft topolog cal space. OPSEARCH, 54:841–867, 2017.

     

    Cite This Article As :
    P, Arulpandy. , Pricilla, Trinita. Bipolar neutrosophic soft generalized pre-continuous mappings. International Journal of Neutrosophic Science, vol. , no. , 2021, pp. 101-110. DOI: https://doi.org/10.54216/IJNS.160205
    P, A. Pricilla, T. (2021). Bipolar neutrosophic soft generalized pre-continuous mappings. International Journal of Neutrosophic Science, (), 101-110. DOI: https://doi.org/10.54216/IJNS.160205
    P, Arulpandy. Pricilla, Trinita. Bipolar neutrosophic soft generalized pre-continuous mappings. International Journal of Neutrosophic Science , no. (2021): 101-110. DOI: https://doi.org/10.54216/IJNS.160205
    P, A. , Pricilla, T. (2021) . Bipolar neutrosophic soft generalized pre-continuous mappings. International Journal of Neutrosophic Science , () , 101-110 . DOI: https://doi.org/10.54216/IJNS.160205
    P A. , Pricilla T. [2021]. Bipolar neutrosophic soft generalized pre-continuous mappings. International Journal of Neutrosophic Science. (): 101-110. DOI: https://doi.org/10.54216/IJNS.160205
    P, A. Pricilla, T. "Bipolar neutrosophic soft generalized pre-continuous mappings," International Journal of Neutrosophic Science, vol. , no. , pp. 101-110, 2021. DOI: https://doi.org/10.54216/IJNS.160205