International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 14 , Issue 1 , PP: 24-41, 2021 | Cite this article as | XML | PDF | Full Length Article

Linear and Non-Linear Decagonal Neutrosophic numbers: Alpha Cuts, Representation, and solution of large MCDM problems

Sara Farooq 1 * , Ali Hamza 2 , Florentin Smarandache 3

  • 1 Department of Mathematics and Statistics, The University of Lahore,Pakistan - (sarafarooq447@gmail.com)
  • 2 Department of Mathematics and Statistics, The University of Lahore,Pakistan - (alifm2909@gmail.com)
  • 3 Dept. Math and Sciences, University of New Mexico, Gallup, NM, USA - (smarand@unm.edu)
  • Doi: https://doi.org/10.54216/IJNS.140102

    Received: November 02, 2020 Accepted: March 07 2021
    Abstract

    The postulation of neutrosophic numbers has been analyzed from different angles in this paper. In this current era, our main purpose is to mention Decagonal Neutrosophic numbers. The types of linear and non-linear generalized decagonal neutrosophic numbers play a very critical role in the theory related to uncertainty This approach is helpful in getting a crisp number from a neutrosophic number. The definitions regarding Linear, Non-Linear, symmetry, Asymmetry, alpha cuts have been introduced and large decision-making problems using fuzzy TOPSIS have been solved.

     

     

     

    Keywords :

      , Accuracy Functions, Neutrosophic number, Decagonal Neutrosophic numbers (DNN), MCDM, TOPSIS.

    References

     

    [1]. Nguyen, HP, Kreinovich, V: Fuzzy logic and its applications in medicine. Int. J. Med. Inform. 62, 165-173 (2001).

     

    [2]. L. Zadeh, “Fuzzy sets”, Information and Control, 8, 338- 353. 1965.

     

    [3]. L. Zadeh, “Fuzzy sets as a basis for a theory of possibility”, Fuzzy sets and system, 1 (1), 3-28. 1978.

     

    [4]. Molodtsov. D, “Soft set theory-first results”. Computer. Math. Appl. 37(4-5), 19-31,1999.

     

    [5]. Jafar. N. M, Hamza. A, Farooq. S. “A Best Technique of Weight Lose using Fuzzy Soft Systems’’, ‘’International Journal of Computer Applications (0975 – 8887)’’, vol 176 (16), April 2020.

     

    [1]  F. Smarandache, Extension of Soft Set to Hypersoft Set, and then to Plithogenic Hypersoft Set, Neutrosophic sets and system. 22(2018), 168-170.

     

    [2]  Abdel-Basset, M., Manogaran, G., Gamal, A., & Smarandache, F. (2018). A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. Design Automation for Embedded Systems, 1-22.

     

    [3]   Nabeeh, N. A., Smarandache, F., Abdel-Basset, M., El-Ghareeb, H. A., & Aboelfetouh, A. (2019). An Integrated Neutrosophic-TOPSIS Approach and Its Application to Personnel Selection: A New Trend in Brain Processing and Analysis. IEEE Access, 7, 29734-29744.

     

    [4]  F. Smarandache, Neutrosophy. Neutrosophic probability, set, and logic, ProQuest Information & Learning, Ann Arbor, Michigan, USA, 1998.

     

    [5]  Riaz. M., Saqlain. M. and Saeed. M. (2019). Application of Generalized Fuzzy TOPSIS in Decision Making for Neutrosophic Soft set to Predict the Champion of FIFA 2018: A Mathematical Analysis, Punjab University Journal of Mathematics, 51(8): 111-126.

     

    [6]  I. Deli and S. Broumi, Neutrosophic Soft Matrices and NSM-decision Making, Journal of Intelligent and Fuzzy Systems, 28(5), (2015), 2233-2241. Neutrosophic Sets and Systems, Vol. 32, 2020 306

     

    [7]  P. Biswas, S. Pramanik, and B. C. Giri. A new methodology for neutrosophic multi-attribute decision making with unknown weight information. Neutrosophic Sets and Systems, 3(2014), 42-52. 36. K. Mondal, and S. Pramanik. Neutrosophic decision making model of school choice. Neutrosophic Sets and Systems, 7 , pp.62-68, 2015.

     

    [8]  M. G. Gafar, M Elhoseny, & M.Gunasekaran,  Modeling neutrosophic variables based on particle swarm optimization and information theory measures for forest fires. The Journal of Supercomputing, pp.1-18, 2018.

     

    [9]  S. Pramanik, P. P. Dey and B. C. Giri, TOPSIS for single valued neutrosophic soft expert set based multiattribute decision making problems, Neutrosophic Sets and Systems, 10, pp.88-95, 2015.

     

    [10]   I. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets and Systems, 20  pp.191–210, 1986.

     

    [11]   Pratihar, J.; Kumar, R.; Dey, A.; Broumi, S. Transportation problem in neutrosophic environment. In Neutrosophic Graph Theory and Algorithms; IGI Global, pp.180-212, 2020.

     

    [12]   F. Smarandache, Neutrosophy. Neutrosophic probability, set, and logic, ProQuest Information & Learning, Ann Arbor, Michigan, USA, 1998.

     

    [13]   Chakraborty, A.; Mondal, S. P.; Ahmadian, A.; Senu, N.; Alam, S.; and Salahshour, S.; Different Forms of Triangular Neutrosophic Numbers, De-Neutrosophication Techniques, and their Applications, Symmetry, vol 10, 327, 2018.; doi:10.3390/sym10080327.

     

    [14]   Chakraborty, A.; Mondal, S. P; Mahata, A.; Alam, S.; Different linear and non-linear form of Trapezoidal Neutrosophic Numbers, De-Neutrosophication Techniques and its Application in time cost optimization technique, sequencing problem; RAIRO Operation Research, vol 11, 327, 2018. doi:10.1051/ro/2019090.

     

    [15]   Chakraborty. A., Sankar P. Mondal, Shariful A. Ali A., Norazak S., Debashis De. and Soheil S., The Pentagonal Fuzzy Number:Its Different Representations, Properties, Ranking, Defuzzification and Application in Game Problems, Symmetry, vol 10, pp 248, 2018.

     

    [16]   Wang, H.B.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single Valued Neutrosophic Sets. Tech. Sci. Appl. Math. 2010.

     

    [17]   Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Int. Fuzzy Syst., vol 26, pp. 2459–2466, 2014.

     

    [18]   Peng, J.J.; Wang, J.Q.; Wang, J.; Zhang, H.Y.; Chen, X.H. Simplified neutrosophic sets and their applications in multi-criteria group decision making problems. Int. J. Syst. Sci., vol 47, pp. 2342–2358, 2016.

     

    [19]   Peng, J.J.; Wang, J.Q.; Wu, X.H.; Zhang, H.Y.; Chen, X.H. The fuzzy cross-entropy for intuitionistic hesitant fuzzy sets and their applications multi-criteria decision-making. Int. J. Syst. Sci. vol 46, pp. 2335– 2350, 2015.

     

    [20]   Abdel-Basset, M., Saleh, M., Gamal, A., & Smarandache, F. An approach of the TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Applied Soft Computing, vol77, pp. 438-452, 2019.

     

    [21]   Riaz.M., Saeed.M. Saqlain.M. and Jafar.N,” Impact of Water Hardness in Instinctive Laundry System based on Fuzzy Logic Controller,” Punjab University Journal of Mathematics, vol 51(4), pp. 73-84, 2018.

     

    [22]   Riaz. M., Saqlain. M. and Saeed. M., “Application of Generalized Fuzzy TOPSIS in Decision Making for Neutrosophic Soft set to Predict the Champion of FIFA 2018: A Mathematical Analysis,” Punjab University Journal of Mathematics, vol 51(8), pp.111-126, 2019.

     

    Cite This Article As :
    Farooq, Sara. , Hamza, Ali. , Smarandache, Florentin. Linear and Non-Linear Decagonal Neutrosophic numbers: Alpha Cuts, Representation, and solution of large MCDM problems. International Journal of Neutrosophic Science, vol. , no. , 2021, pp. 24-41. DOI: https://doi.org/10.54216/IJNS.140102
    Farooq, S. Hamza, A. Smarandache, F. (2021). Linear and Non-Linear Decagonal Neutrosophic numbers: Alpha Cuts, Representation, and solution of large MCDM problems. International Journal of Neutrosophic Science, (), 24-41. DOI: https://doi.org/10.54216/IJNS.140102
    Farooq, Sara. Hamza, Ali. Smarandache, Florentin. Linear and Non-Linear Decagonal Neutrosophic numbers: Alpha Cuts, Representation, and solution of large MCDM problems. International Journal of Neutrosophic Science , no. (2021): 24-41. DOI: https://doi.org/10.54216/IJNS.140102
    Farooq, S. , Hamza, A. , Smarandache, F. (2021) . Linear and Non-Linear Decagonal Neutrosophic numbers: Alpha Cuts, Representation, and solution of large MCDM problems. International Journal of Neutrosophic Science , () , 24-41 . DOI: https://doi.org/10.54216/IJNS.140102
    Farooq S. , Hamza A. , Smarandache F. [2021]. Linear and Non-Linear Decagonal Neutrosophic numbers: Alpha Cuts, Representation, and solution of large MCDM problems. International Journal of Neutrosophic Science. (): 24-41. DOI: https://doi.org/10.54216/IJNS.140102
    Farooq, S. Hamza, A. Smarandache, F. "Linear and Non-Linear Decagonal Neutrosophic numbers: Alpha Cuts, Representation, and solution of large MCDM problems," International Journal of Neutrosophic Science, vol. , no. , pp. 24-41, 2021. DOI: https://doi.org/10.54216/IJNS.140102