Volume 9 , Issue 2 , PP: 86-99, 2020 | Cite this article as | XML | Html | PDF | Full Length Article
M.A. Ibrahim 1 , A.A.A. Agboola 2 , B.S. Badmus 3 , S.A. Akinleye 4
Doi: https://doi.org/10.54216/IJNS.090203
This paper presents the refinement of neutrosophic hypergroup and studies some of its properties. Several interesting results and examples are presented. The existence of a good homomorphism between a refined neutrosophic hypergroup H(I1; I2) and a neutrosophic hypergroup H(I) is established. Keywords: Neutrosophy, neutrosophic hypegroup, neutrosophic subhypergroup, refined neutrosophic hypergroup, refined neutrosophic subhypergroup.
Neutrosophic Hypergroup, Fuzzy Logic
[1] Adeleke, E.O, Agboola, A.A.A and Smarandache, F. Refined Neutrosophic Rings I, International Journal of Neutrosophic Science (IJNS), Vol. 2(2), pp. 77-81, 2020.
[2] Adeleke, E.O, Agboola, A.A.A and Smarandache, F. Refined Neutrosophic Rings II, International Journal of Neutrosophic Science (IJNS), Vol. 2(2), pp. 89-94, 2020.
[3] Agboola, A.A.A., Ibrahim, A.M. and Adeleke, E.O, Elementary Examination of NeutroAlgebras and
AntiAlgebras Viz-a-Viz the Classical Number Systems, Vol. 4, pp. 16-19, 2020.
[4] Agboola, A.A.A. On Refined Neutrosophic Algebraic Structures, Neutrosophic Sets and Systems 10, pp
99-101, 2015.
[5] Agboola, A.A.A. and Akinleye, S.A., Neutrosophic Hypervector Spaces, ROMAI Journal, Vol.11 , pp.
1-16, 2015.
[6] Agboola, A.A.A and Davvaz, B., On Neutrosophic Canonical Hypergroups and Neutrosophic Hyperrings, Neutrosophic Sets and Systems. Vol. 2, pp. 34-41, 2014.
[7] Agboola, A.A.A and Davvaz, B., Introduction to Neutrosophic Hypergroups, ROMAI J., Vol. 9, no.2,
pp. 1-10, 2013.
[8] Agboola,A.A.A., Davvaz, B. and Smarandache,F. Neutrosophic quadruple algebraic hyperstructures,
Ann. Fuzzy Math.Inform. Vol. 14, pp. 29-42, 2017.
[9] Al-Tahan, M. and Davvaz, B., Refined neutrosophic quadruple (poly-)hypergroups and their fundamental
group, Neutrosophic Sets and Systems, Vol. 27, pp. 138-153, 2019.
[10] Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 20, pp. 87-96, 1986.
[11] Davvaz, B. and Leoreanu-Fotea,V., Hyperring Theory and Applications, International Academic Press,
Palm Harber, USA, 2007.
[12] Ibrahim, M.A.,Agboola, A.A.A, Adeleke, E.O, Akinleye, S.A., Introduction to Neutrosophic Subtraction
Algebra and Neutrosophic Subtraction Semigroup,International Journal of Neutrosophic Science (IJNS),
Vol. 2(2), pp. 47-62, 2020.
[13] Marty, F. Role de la notion dhypergroupe dans letude des groupes non abeliens, Comptes Renclus Acad.
Sci. Paris Math, Vol. 201, pp 636-638, 1935.
[14] Massouros, C., Some properties of certain Subhypergroups, RATIO MATHEMATICA Vol.25, pp.67-76,2013.
[15] Smarandache, F., A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic Set,
Neutrosophic Probability, American Research Press, Rehoboth, 2003.
[16] Smarandache, F., n-Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress in
Physics, Vol. 4, pp. 143-146, 2013.
[17] Smarandache, F., (T,I,F)- Neutrosophic Structures, Neutrosophic Sets and Systems,Vol. 8 , pp.3-10, 2015.
[18] Vasantha Kandasamy W.B and Smarandache, F., Basic Neutrosophic Algebraic Structures
and Their Applications to Fuzzy and Neutrosophic Models, Hexis, Church Rock,2004,
http://fs.unm.edu/ScienceLibrary.htm
[19] Vasantha Kandasamy, W.B. and Smarandache, F., Some Neutrosophic Algebraic Structures and Neutrosophic N-Algebraic Structures, Hexis, Phoenix, Arizona, 2006, http://fs.unm.edu/ScienceLibrary.htm
[20] Vasantha Kandasamy, W.B., Neutrosophic Rings, Hexis, Phoenix, Arizona,2006
http://fs.unm.edu/ScienceLibrary.htm
[21] Zadeh, L.A., Fuzzy Sets, Information and Control, Vol. 8, pp. 338-353, 1965.