Volume 7 , Issue 2 , PP: 62-73, 2020 | Cite this article as | XML | Html | PDF | Full Length Article
Agboola A.A.A 1 *
The objective of this paper is to introduce the concept of NeutroRings by considering three NeutroAxioms (NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and NeutroDistributivity (multiplication over addition)). Several interesting results and examples on NeutroRings, NeutroSubgrings, NeutroIdeals, NeutroQuotientRings and NeutroRingHomomorphisms are presented. It is shown that the 1st isomorphism theorem of the classical rings holds in the class of NeutroRings.
Neutrosophy, NeutroGroup, NeutroSubgroup, NeutroRing, NeutroSubring, NeutroIdeal, Neutro-QuotientRing and NeutroRingHomomorphism.
[1]Adeleke, E.O., Agboola, A.A.A. and Smarandache, F., Refined Neutrosophic Rings I, International Journal of Neutrosophic Science, vol. 2(2), pp. 77-81, 2020. (DOI:10.5281/zenodo.3728222)
[2] Adeleke E.O., Agboola A.A.A. and Smarandache F., Refined Neutrosophic Rings II, International Journal
of Neutrosophic Science, vol. 2(2), pp. 89-94, 2020. (DOI:10.5281/zenodo.3728235)
[3] Agboola, A.A.A., Introduction to NeutroGroups, International Journal of Neutrosophic Science,Volume
6 , Issue 1, pp. 41-47 , 2020
[4] Agboola, A.A.A., On Refined Neutrosophic Quotient Groups, International Journal of Neutrosophic Science, vol. 5 (2), pp. 76-82, 2020. DOI:10.5281/zenodo.3828609.
[5] Agboola, A.A.A., Ibrahim, M.A., Adeleke, E.O. and Akinleye, S.A., On Refined Neutrosophic Algebraic Hyperstructures I, International Journal of Neutrosophic Science, vol. 5 (1), pp. 29-37, 2020.
DOI:10.5281/zenodo.3789007.
[6] Agboola, A.A.A., Ibrahim, M.A. and Adeleke, E.O., Elementary Examination of NeutroAlgebras and
AntiAlgebras viz-a-viz the Classical Number Systems, International Journal of Neutrosophic Science,
vol. 4 (1), pp. 16-19, 2020. DOI:10.5281/zenodo.3752896.
[7] Agboola, A.A.A., On Refined Neutrosophic Algebraic Structures, Neutrosophic Sets and Systems,
vol.10, pp. 99-101, 2015.
[8] Agboola, A.A.A., Akinola, A.D. and Oyebola, O.Y, Neutrosophic Rings I, International Journal of Mathematical Combinatorics, vol. 4, pp. 1-14, 2011.
[9] Agboola, A.A.A., Adeleke, E.O. and Akinleye, S.A., Neutrosophic Rings II, International Journal of
Mathematical Combinatorics, vol. 2, pp. 1-8, 2012.
[10] Agboola, A.A.A., Akwu, A.O. and Oyebo, Y.T., Neutrosophic Groups and Neutrosopic Subgroups, International Journal of Mathematical Combinatorics, vol. 3, pp. 1-9, 2012.
[11] Agboola, A.A.A and Davvaz, B., On Neutrosophic Canonical Hypergroups and Neutrosophic Hyperrings, Neutrosophic Sets and Systems, vol. 2, pp. 34-41, 2014.
[12] Agboola, A.A.A., Davvaz, B. and Smarandache, F., Neutrosophic Quadruple Hyperstructures, Annals of
Fuzzy Mathematics and Informatics, vol. 14, pp. 29-42, 2017.
[13] Akinleye, S.A., Smarandache, F. and Agboola, A.A.A., On Neutrosophic Quadruple Algebraic Structures, Neutrosophic Sets and Systems, vol. 12, pp. 122-126, 2016.
[14] Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 20, pp. 87-96, 1986.
[15] Deli, I., Broumi, S. and Smarandache, F., On neutrosophic refined sets and their applications in medical
diagnosis, Journal of New Theory, Vol. 6, pp. 88-98, 2015.
[16] Gilbert, L. and Gilbert, J., Elements of Modern Algebra, Eighth Edition, Cengage Learning, USA, 2015.
[17] Ibrahim, M.A., Agboola, A.A.A., Adeleke, E.O. and Akinleye, S.A., On Refined Neutrosophic
Hypervector Spaces, International Journal of Neutrosophic Science, vol. 4 (1), pp. 20-35, 2020.
DOI:10.5281/zenodo.3752906.
[18] Liu, P. and Wang, Y., Multiple attribute decision-making method based on single-valued neutrosophic
normalized weighted Bonferroni mean, Neural Computing and Applications, Vol. 25 (7-8), pp. 2001-
2010, 2014.
[19] Smarandache, F., Introduction to NeutroAlgebraic Structures, in Advances of Standard and Nonstandard
Neutrosophic Theories, Pons Publishing House Brussels, Belgium, Ch. 6, pp. 240-265, 2019.
[20] Smarandache, F., Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures (revisited),
Neutrosophic Sets and Systems, vol. 31, pp. 1-16, 2020. DOI: 10.5281/zenodo.3638232.
[21] Smarandache, F., NeutroAlgebra is a Generalization of Partial Algebra, International Journal of Neutrosophic Science, vol. 2 (1), pp. 08-17, 2020.
[22] Smarandache, F. and Pramanik, S., New Neutrosophic Sets via Neutrosophic Topological Spaces, In
Operational Research; Eids.; Pons Editions: Brussels, Belgium, Vol. I, pp. 189-209, 2017.
[23] Smarandache, F. and Pramanik, S., Neutrosophic crisp sets via neutrosophic crisp topological spaces,
Neutrosophic Sets and Systems, Vol. 13, pp. 96-104, 2016.
[24] Smarandache, F. and Pramanik, S., On Generalized Closed Sets and Generalized PreClosed Sets in Neutrosophic Topological Spaces, Mathematics, Vol. 7(1), pp. 1-12, 2019.
DOI:DOI.ORG/10.3390/math7010001.
[25] Smarandache, F., A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic Set,
Neutrosophic Probability, (3rd edition), American Research Press, Rehoboth, 2003.
http://fs.gallup.unm.edu/eBook-Neutrosophic4.pdf.
[26] Smarandache, F., n-Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress in
Physics, USA, vol. 4, pp. 143-146, 2013.
[27] Smarandache, F., (T,I,F)- Neutrosophic Structures, Neutrosophic Sets and Systems, vol. 8, pp. 3-10,
2015.
[28] Vasantha Kandasamy, W.B. and Smarandache, F., Neutrosophic Rings, Hexis, Phoenix, Arizona, 2006.
http://fs.gallup.unm.edu/NeutrosophicRings.pdf
[29] Ye, J. and Zhang, Q.S., Single-valued neutrosophic similarity measures for multiple attribute decision
making, Neutrosophic Sets and Systems, Vol. 2, pp. 48-54, 2014.
[30] Zadeh, L.A., Fuzzy Sets, Information and Control, Vol. 8, pp. 338-353, 1965.