International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 27 , Issue 1 , PP: 309-323, 2026 | Cite this article as | XML | Html | PDF | Full Length Article

A Mathematical Framework for Indeterminacy in Parabolic PDEs: The Neutrosophic Heat Equation

Ghassan AL-Thabhawee 1 , Hussein Alkattan 2 , El-Sayed M. El-kenawy 3 * , Marwa M. Eid 4

  • 1 Sciences of Mathematics, Computer Sciences, College of Health and Medical Techniques-Kufa Al-Furat Al-Awsat Technical University, Kufa, Iraq - (gmohammed@atu.edu.iq)
  • 2 Department of System Programming, South Ural State University, Chelyabinsk, Russia; Directorate of Environment in Najaf, Ministry of Environment, Najaf, Iraq - (alkattan.hussein92@gmail.com)
  • 3 Delta Higher Institute of Engineering and Technology Department for Communications and Electronics Mansoura 35511, Egypt; Applied Science Research Center. Applied Science Private University, Amman, Jordan - (skenawy@ieee.org)
  • 4 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura, Egypt; Jadara Research Center, Jadara University, Irbid 21110, Jordan - (mmm@ieee.org)
  • Doi: https://doi.org/10.54216/IJNS.270127

    Received: March 29, 2025 Revised: June 08, 2025 Accepted: July 29, 2025
    Abstract

    We develop a neutrosophic framework for the 1-D transient heat equation that treats key thermal parameters as indeterminate rather than fixed or strictly probabilistic. Thermal diffusivity and source strength are represented by neutrosophic intervals; two extreme forward solves yield guaranteed envelopes u_min and u_max , from which we compute a core field u_mean =1/2 (u_min+u_max ), an absolute width W=u_max-u_min, and a relative indeterminacy index I=W/(|u_mean  |+ε). Using an explicit FTCS discretization with stability enforced by α_max , we report decision-oriented diagnostics: spatio-temporal maps of u_mean ,W, and I; band plots along space/time sections; percentile trajectories of I over time; coverage curves quantifying the fraction of space-time with I≤τ; and response surfaces showing sensitivity of u(x^( ^* ),T) to (α,S). Results demonstrate that, even when absolute spreads remain small, localized reliability losses can occur where u_mean  crosses zero, a regime routinely obscured by point-estimate modelling. The framework is transparent (envelopes + core), computationally light (two extreme runs), and compatible with neutrosophic statistics for data-driven interval setting. Beyond thermal diffusion, the method provides a conservative, explainable backbone for transport-driven decisions in materials, interfaces, and infrastructure subject to incomplete or evolving information.

    Keywords :

    Neutrosophic modeling , Heat equation , Transient heat conduction , Interval uncertainty , Envelope propagation , Relative indeterminacy index (RII) , Thermal diffusivity , Source amplitude , Uncertainty quantification

    References

    [1] L. E. Frenzel, Crash Course in Electronics Technology, 2nd ed. Oxford, U.K.: Newnes, 1997.

     

    [2] J.-C. Han and B.-L. Wang, “Thermal shock resistance of ceramics with temperature-dependent material properties at elevated temperature,” Acta Materialia, vol. 59, pp. 1373–1382, 2011.

     

    [3] C. Luo, T. Jiao, J. Gu, Y. Tang, and J. Kong, “Graphene shield by SiBCN ceramic: A promising high-temperature electromagnetic wave-absorbing material with oxidation resistance,” ACS Applied Materials & Interfaces, vol. 10, pp. 39307–39318, 2018.

     

    [4] N. Van Garderen, F. J. Clemens, M. Mezzomo, C. P. Bergmann, and T. Graule, “Investigation of clay content and sintering temperature on attrition resistance of highly porous diatomite-based material,” Applied Clay Science, vol. 52, pp. 115–121, 2011.

     

    [5] A. M. Khounsary, D. Chojnowski, L. Assoufid, and W. M. Worek, High Heat Flux and Synchrotron Radiation Beamlines, pp. 45–51. Bellingham, WA, USA: International Society for Optics and Photonics (SPIE), 1997.

     

    [6] D. Liu, Y. Luo, and X. Shang, “Experimental investigation of high temperature thermal contact resistance between high thermal conductivity C/C material and Inconel 600,” International Journal of Heat and Mass Transfer, vol. 80, pp. 407–410, 2015.

     

    [7] F. Shahzad, A. Iqbal, H. Kim, and C. M. Koo, “2D transition metal carbides (MXenes): Applications as an electrically conducting material,” Advanced Materials, vol. 32, 2002159, 2020.

     

    [8] R.-B. Hong, J.-R. Wu, and H.-B. Cai, “Low-temperature crack resistance of coal gangue powder and polyester fibre asphalt mixture,” Construction and Building Materials, vol. 238, 117678, 2020.

     

    [9] M. Aslam, “A study on skewness and kurtosis estimators of wind speed distribution under indeterminacy,” Theoretical and Applied Climatology, vol. 143, pp. 1227–1234, 2021.

     

    [10] P. Grzegorzewski, “Testing statistical hypotheses with vague data,” Fuzzy Sets and Systems, vol. 112, pp. 501–510, 2000.

     

    [11] R. A. K. Sherwani, H. Shakeel, W. B. Awan, M. Faheem, and M. Aslam, “Analysis of COVID-19 data using neutrosophic Kruskal–Wallis H test,” BMC Medical Research Methodology, vol. 21, pp. 1–7, 2021.

     

    [12] J. Chen, J. Ye, and S. Du, “Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics,” Symmetry, vol. 9, p. 208, 2017.

     

    [13] J. Ye, “Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses,” Artificial Intelligence in Medicine, vol. 63, pp. 171–179, 2015.

     

    [14] M. Aslam, “Enhanced statistical tests under indeterminacy with application to earth speed data,” Earth Science Informatics, vol. 14, pp. 1261–1267, 2021.

     

    [15] F. Smarandache, The Neutrosophic Research Method in Scientific and Humanistic Fields. Albuquerque, NM, USA: The College of Information Sciences and Technology, 2010.

     

    [16] A. M. Alzahrani, M. K. A. Khan, and F. Smarandache, “Neutrosophic set theory and its applications in decision-making processes,” Mathematics, vol. 9, no. 10, p. 1128, 2021.

     

    [17] M. G. G. Chico, N. H. Bandera, S. H. Lazo, and N. L. Sailema, “Assessment of the relevance of intercultural medical care. Neutrosophic sampling,” Neutrosophic Sets and Systems, vol. 44, pp. 420–426, 2021.

     

    [18] R. A. K. Sherwani, H. Shakeel, W. B. Awan, M. Faheem, and M. Aslam, “Analysis of COVID-19 data using neutrosophic Kruskal–Wallis H test,” BMC Medical Research Methodology, vol. 21, pp. 1–7, 2021.

     

    [19] O. G. El Barbary and R. Abu Gdairi, “Neutrosophic logic-based document summarization,” Journal of Mathematics, 2021, pp. 1–7.

     

    [20] W.-Q. Duan, Z. Khan, M. Gulistan, and A. Khurshid, “Neutrosophic exponential distribution: Modeling and applications for complex data analysis,” Complexity, 2021, pp. 1–8.

     

    [21] M. Gulistan, A. Elmoasry, and N. Yaqoob, “N-version of the neutrosophic cubic set: Application in the negative influences of Internet,” The Journal of Supercomputing, vol. 77, p. 11410, 2021.

     

    [22] M. Aslam, “A new attribute sampling plan using neutrosophic statistical interval method,” Complex & Intelligent Systems, vol. 5, pp. 365–370, 2019.

     

    [23] F. Smarandache, Introduction to Neutrosophic Statistics. Craiova, Romania: Infinite Study (Romania-Educational Publisher), 2014.

     

    [24] J. Chen, J. Ye, and S. Du, “Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics,” Symmetry, vol. 9, p. 208, 2017.

     

    [25] J. Chen, J. Ye, S. Du, and R. Yong, “Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers,” Symmetry, vol. 9, p. 123, 2017.

     

    [26] M. Aslam, “Design of the Bartlett and Hartley tests for homogeneity of variances under indeterminacy environment,” Journal of Taibah University for Science, vol. 14, pp. 6–10, 2020.

     

    [27] M. Aslam, “On detecting outliers in complex data using Dixon’s test under neutrosophic statistics,” Journal of King Saud University – Science, vol. 32, pp. 2005–2008, 2020.

     

    [28] A. Bid, A. Bora, and A. Raychaudhuri, “Temperature dependence of the resistance of metallic nanowires of diameter ≥ 15 nm: Applicability of Bloch–Grüneisen theorem,” Physical Review B, vol. 74, 035426, 2006.

     

    [29] J. Elguindi, J. Wagner, and C. Rensing, “Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces,” Journal of Applied Microbiology, vol. 106, pp. 1448–1455, 2009.

     

    [30] N. Almusallam, B. T. AlNuaimi, H. Alkattan, M. Abotaleb, and K. Dhoska, “Physics-informed neural networks for solving the heat equation in thermal engineering,” International Journal of Technical and Physical Problems of Engineering, vol. 17, no. 1, pp. 375–382, 2025.

    Cite This Article As :
    AL-Thabhawee, Ghassan. , Alkattan, Hussein. , M., El-Sayed. , M., Marwa. A Mathematical Framework for Indeterminacy in Parabolic PDEs: The Neutrosophic Heat Equation. International Journal of Neutrosophic Science, vol. , no. , 2026, pp. 309-323. DOI: https://doi.org/10.54216/IJNS.270127
    AL-Thabhawee, G. Alkattan, H. M., E. M., M. (2026). A Mathematical Framework for Indeterminacy in Parabolic PDEs: The Neutrosophic Heat Equation. International Journal of Neutrosophic Science, (), 309-323. DOI: https://doi.org/10.54216/IJNS.270127
    AL-Thabhawee, Ghassan. Alkattan, Hussein. M., El-Sayed. M., Marwa. A Mathematical Framework for Indeterminacy in Parabolic PDEs: The Neutrosophic Heat Equation. International Journal of Neutrosophic Science , no. (2026): 309-323. DOI: https://doi.org/10.54216/IJNS.270127
    AL-Thabhawee, G. , Alkattan, H. , M., E. , M., M. (2026) . A Mathematical Framework for Indeterminacy in Parabolic PDEs: The Neutrosophic Heat Equation. International Journal of Neutrosophic Science , () , 309-323 . DOI: https://doi.org/10.54216/IJNS.270127
    AL-Thabhawee G. , Alkattan H. , M. E. , M. M. [2026]. A Mathematical Framework for Indeterminacy in Parabolic PDEs: The Neutrosophic Heat Equation. International Journal of Neutrosophic Science. (): 309-323. DOI: https://doi.org/10.54216/IJNS.270127
    AL-Thabhawee, G. Alkattan, H. M., E. M., M. "A Mathematical Framework for Indeterminacy in Parabolic PDEs: The Neutrosophic Heat Equation," International Journal of Neutrosophic Science, vol. , no. , pp. 309-323, 2026. DOI: https://doi.org/10.54216/IJNS.270127