International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 27 , Issue 2 , PP: 188-194, 2026 | Cite this article as | XML | Html | PDF | Full Length Article

On Graded S-semiprime Submodules of Graded Modules Over Graded Commutative Rings

Mohammad Alkhatib 1 , Khaldoun Al-Zoubi 2 *

  • 1 Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan - (mwalkhatib20@sci.just.edu.jo)
  • 2 Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan - ( kfzoubi@just.edu.jo)
  • Doi: https://doi.org/10.54216/IJNS.270216

    Received: April 16, 2025 Revised: June 28, 2025 Accepted: August 24, 2025
    Abstract

    Let G be a group with identity e. Let T be a commutative G-graded ring with non-zero identity, W be a graded T-module and S h(T) a multiplicatively closed subset of T. In this article, we introduce and study the concept of graded S-semiprime submodules. A graded submodule K of W with (K :T W) ∩ S = is said to be graded S-semiprime, if there exists a fixed st S such that whenever rn i mj K for some ri h(T), mj h(W), t, i, j G, and n N, then strimj K. Some characterizations and properties of graded S-semiprime submodules are given.

    Keywords :

    Graded S-semiprime submodule , Graded S-semiprime ideal , Graded semiprime submodule

    References

    [1] K. Al-Zoubi, R. Abu-Dawwas and I. Al-Ayyoub, Graded semiprime submodules and graded semi-radical of graded submodules in graded modules, Ricerche mat., 66 (2) (2017), 449–455.

     

    [2] K. Al-Zoubi and S. Alghueiri, On graded Jgr -semiprime submodules, Italian Journal of Pure and Applied Mathematics, 46 (2021), 361–369.

     

    [3] S.E. Atani, On Graded Prime Submodules, Chiang Mai J. Sci. 33 (1) (2006), 3–7.

     

    [4] J. Escoriza and B. Torrecillas, Multiplication Objects in Commutative Grothendieck Categories, Comm. in Algebra, 26 (6) (1998), 1867-1883.

     

    [5] F. Farzalipour and P. Ghiasvand, On Graded Semiprime and Graded Weakly Semiprime Ideals, Int. Electron. J. Algebra 13 (2013), 15–22.

     

    [6] J. Smith and A. Johnson, Graded Semiprime Ideals in Non-Commutative Rings, Journal of Algebra and Its Applications 23 (4) (2023), 123–135.

     

    [7] P. Ghiasvand, P. and F. Farzalipour, Graded Semiprime Submodules Over non–Commutative Graded Rings. Journal of Algebraic Systems, 10 (1) (2022), 95-110.

     

    [8] R. Hazrat, Graded Rings and Graded Grothendieck Groups, Cambridge University Press, Cambridge, 2016.

     

    [9] S.C Lee, R. Varmazyar, Semiprime submodules of Graded multiplication modules, J. Korean Math. Soc. 49(2) (2012), 435-447.

     

    [10] C. Nastasescu, F. Van Oystaeyen, Graded and filtered rings and modules, Lecture notes in mathematics 758, Berlin-New York: Springer-Verlag, 1982.

     

    [11] C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, 1982

     

    [12] Nastasescu, F. Van Oystaeyen, Methods of Graded Rings, LNM 1836. Berlin-Heidelberg: Springer- Verlag, 2004.

     

    [13] H. A.Tavallaee and M. Zolfaghari, Graded weakly semiprime submodules of graded multiplication modules, Lobachevskii J. Math. 34 (1) (2013), 61–67.

    Cite This Article As :
    Alkhatib, Mohammad. , Al-Zoubi, Khaldoun. On Graded S-semiprime Submodules of Graded Modules Over Graded Commutative Rings. International Journal of Neutrosophic Science, vol. , no. , 2026, pp. 188-194. DOI: https://doi.org/10.54216/IJNS.270216
    Alkhatib, M. Al-Zoubi, K. (2026). On Graded S-semiprime Submodules of Graded Modules Over Graded Commutative Rings. International Journal of Neutrosophic Science, (), 188-194. DOI: https://doi.org/10.54216/IJNS.270216
    Alkhatib, Mohammad. Al-Zoubi, Khaldoun. On Graded S-semiprime Submodules of Graded Modules Over Graded Commutative Rings. International Journal of Neutrosophic Science , no. (2026): 188-194. DOI: https://doi.org/10.54216/IJNS.270216
    Alkhatib, M. , Al-Zoubi, K. (2026) . On Graded S-semiprime Submodules of Graded Modules Over Graded Commutative Rings. International Journal of Neutrosophic Science , () , 188-194 . DOI: https://doi.org/10.54216/IJNS.270216
    Alkhatib M. , Al-Zoubi K. [2026]. On Graded S-semiprime Submodules of Graded Modules Over Graded Commutative Rings. International Journal of Neutrosophic Science. (): 188-194. DOI: https://doi.org/10.54216/IJNS.270216
    Alkhatib, M. Al-Zoubi, K. "On Graded S-semiprime Submodules of Graded Modules Over Graded Commutative Rings," International Journal of Neutrosophic Science, vol. , no. , pp. 188-194, 2026. DOI: https://doi.org/10.54216/IJNS.270216