International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 27 , Issue 2 , PP: 167-174, 2026 | Cite this article as | XML | Html | PDF | Full Length Article

Neutrosophic Average Edge Connectivity with Applications to Communication Networks

Aparna Tripathy 1 , Amaresh Chandra Panda 2 , Siva Prasad Behera 3 , Prasanta Kumar Raut 4 , Mana Donganont 5 * , Said Broumi 6

  • 1 Department of Mathematics, C.V. Raman Global University, Bhubaneswar, Odisha, India - (aparnatripathy03@gmail.com)
  • 2 Department of Mathematics, C.V. Raman Global University, Bhubaneswar, Odisha, India - (amaresh.chandra.panda@cvrgi.edu.in)
  • 3 Department of Mathematics, C.V. Raman Global University, Bhubaneswar, Odisha, India - (sivaiitkgp12@gmail.com)
  • 4 Department of Mathematics, Trident Academy of Technology, Bhubaneswar, Odisha, India - (prasantaraut95@gmail.com)
  • 5 Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand - (mana.do@up.ac.th)
  • 6 Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan II, Casablanca, Morocco - ( broumisaid78@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.270214

    Received: April 02, 2025 Revised: June 02, 2025 Accepted: August 10, 2025
    Abstract

    Average edge connectivity is a fundamental concept in graph theory, widely employed to evaluate the robustness of networks through the analysis of local edge cuts. Classical fuzzy extensions allow for graded membership, yet they fail to clearly distinguish between inherent uncertainty and definite absence of edges. To overcome this limitation, we introduce the notion of neutrosophic average edge connectivity, a tri-valued connectivity measure formulated within the framework of single-valued neutrosophic graphs (SVNGs). In this study, we rigorously define neutrosophic local edge cuts, establish key theoretical results including bounds and monotonicity properties, and design efficient algorithms tailored for particular families of graphs. The applicability of the proposed framework is demonstrated through a detailed communication-network case study, which highlights its capacity to capture structural resilience under indeterminate conditions. Overall, the proposed approach generalizes classical robustness indicators and provides a comprehensive tool for analyzing connectivity in networks characterized by vagueness, indeterminacy, and incomplete information.

    Keywords :

    Neutrosophic graph , Local edge cut , Average edge connectivity , Robustness , Communication networks

    References

    [1] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

     

    [2] Rosenfeld, A. (1975). Fuzzy graphs. In Fuzzy Sets and Their Applications to Cognitive and Decision Processes; Elsevier: Amsterdam, The Netherlands, pp. 77–95.

     

    [3] Rosa, A. (1966). On certain valuations of the vertices of a graph. Theory of Graphs (Internat. Sympos., Rome), New York: Gordon and Breach, pp. 349–355.

     

    [4] Nagoor Gani, A., & Rajalaxmi (a) Subahashini, D. (2012). Properties of fuzzy labeling graph. Applied Mathematical Sciences, 6(70), 3461–3466.

     

    [5] Vimala, S., & Jebesty Shajila, R. (2016). A Note on Fuzzy Edge-Vertex Graceful Labeling of Star graph and Helm graph. Advances in Theoretical and Applied Mathematics, 11(4), 331–338.

     

    [6] Ameenal Bibi, K., & Devi, M. (2017). A Note on Fuzzy Vertex Graceful Labeling on some Special Graphs. International Journal of Advanced Research in Computer Science, 8(6), 175–180.

     

    [7] Jebesty Shajila, R., & Vimala, S. (2016). Fuzzy Vertex Graceful Labeling on Wheel and Fan Graphs. IOSR Journal of Mathematics, 12(2), 45–49.

     

    [8] Bhattacharya, P. (1987). Some remarks on fuzzy graphs. Pattern Recognition Letters, 6(5), 297–302.

     

    [9] Bhuttani, K. R., & Battou, A. (2003). On M-strong fuzzy graphs. Information Sciences, 1–2, 103–109.

     

    [10] Sitara, M., Akram, M., & Yousaf Bhatti, M. (2019). Fuzzy graph structures with application. Mathematics, 7(1), 63.

     

    [11] Atanassov, K. (2016). Intuitionistic fuzzy sets. International Journal Bioautomation, 20, Bulgarian Academy of Sciences.

     

     [12] Parvathi, R., & Karunambigai, M. G. (2006). Intuitionistic Fuzzy Graphs. In Computational Intelligence, Theory and Applications, International Conference, Germany, pp. 139–150.

     

    [13] Akram, M., & Akmal, R. (2016). Operations on Intuitionistic Fuzzy Graph Structures. Fuzzy Information and Engineering, 8(4), 389–410.

     

    [14] Smarandache, F. (2011). A geometric interpretation of the neutrosophic set – A generalization of the intuitionistic fuzzy set. In IEEE International Conference on Granular Computing, pp. 602–606.

     

    [15] Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued Neutrosophic Sets. Multispace and Multistructure, pp. 410–413.

     

    [16] Vasantha Kandasamy, W. B., Ilanthenral, K., & Smarandache, F. (2015). Neutrosophic Graphs: A New Dimension to Graph Theory. Kindle Edition, pp. 1–125.

     

    [17] Hussain, S.S.; Durga, N.; Aslam, M.; Muhiuddin, G.; Ghorai, G. (2024). New concepts on quadriparti tioned neutrosophic competition graph with application. International Journal of Applied and Computational Mathematics, 10(2), 57.

     

    [18] Das, K.; Samanta, S.; De, K. (2020). Generalized neutrosophic competition graphs. Neutrosophic Sets and Systems, 31, 156–171.

     

    [19] Razak, S.A.; Rodzi, Z.M.; Ahmad, N.; Ahmad, G. (2024). Exploring the Boundaries of Uncertainty: Interval Valued Pythagorean Neutrosophic Set and Their Properties. Malaysian Journal of Fundamental and Applied Sciences, 20(4), 813–824.

     

    [20] Yang, L.; Li, D.; Tan, R. (2020). Research on the shortest path solution method of interval valued neutrosophic graphs based on the ant colony algorithm. IEEE Access, 8, 88717–88728.

     

    [21] Chakraborty, A. (2020). Application of pentagonal neutrosophic number in shortest path problem. International Journal of Neutrosophic Science, 3(1), 21–28.

     

    [22] Muthuerulappan, J.; Chelliah, S. (2024). Exploring Edge-Neighbor Distinguishing Proper Coloring in Neutrosophic Graphs: Theory and Applications. Journal of Computational Analysis & Applications, 33(6)..

     

    [23] Kanchana, M.; Kavitha, K. (2024). Heuristic Incident Edge Path Algorithm for Interval-Valued Neutrosophic Transportation Network. Contemporary Mathematics, pp. 2016–2036.

     

    [24] Kaviyarasu, M.; Aslam, M.; Afzal, F.; Mohammed Saeed, M.; Mehmood, A.; Gul, S. (2024). The Con nectivity Indices Concept of Neutrosophic Graph and Their Application of Computer Network, Highway System and Transport Network Flow. Scientific Reports, 14(1), 4891.

    Cite This Article As :
    Tripathy, Aparna. , Chandra, Amaresh. , Prasad, Siva. , Kumar, Prasanta. , Donganont, Mana. , Broumi, Said. Neutrosophic Average Edge Connectivity with Applications to Communication Networks. International Journal of Neutrosophic Science, vol. , no. , 2026, pp. 167-174. DOI: https://doi.org/10.54216/IJNS.270214
    Tripathy, A. Chandra, A. Prasad, S. Kumar, P. Donganont, M. Broumi, S. (2026). Neutrosophic Average Edge Connectivity with Applications to Communication Networks. International Journal of Neutrosophic Science, (), 167-174. DOI: https://doi.org/10.54216/IJNS.270214
    Tripathy, Aparna. Chandra, Amaresh. Prasad, Siva. Kumar, Prasanta. Donganont, Mana. Broumi, Said. Neutrosophic Average Edge Connectivity with Applications to Communication Networks. International Journal of Neutrosophic Science , no. (2026): 167-174. DOI: https://doi.org/10.54216/IJNS.270214
    Tripathy, A. , Chandra, A. , Prasad, S. , Kumar, P. , Donganont, M. , Broumi, S. (2026) . Neutrosophic Average Edge Connectivity with Applications to Communication Networks. International Journal of Neutrosophic Science , () , 167-174 . DOI: https://doi.org/10.54216/IJNS.270214
    Tripathy A. , Chandra A. , Prasad S. , Kumar P. , Donganont M. , Broumi S. [2026]. Neutrosophic Average Edge Connectivity with Applications to Communication Networks. International Journal of Neutrosophic Science. (): 167-174. DOI: https://doi.org/10.54216/IJNS.270214
    Tripathy, A. Chandra, A. Prasad, S. Kumar, P. Donganont, M. Broumi, S. "Neutrosophic Average Edge Connectivity with Applications to Communication Networks," International Journal of Neutrosophic Science, vol. , no. , pp. 167-174, 2026. DOI: https://doi.org/10.54216/IJNS.270214