International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 26 , Issue 4 , PP: 204-218, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Coefficient Bounds for Generalized n-Fold Symmetric Neutrosophic Bi-univalent Functions

Isra Al-Shbeil 1 * , Wael Mahmoud Mohammad Salameh 2 , Jianhua Gong 3 , Ajmal Khan 4 , Shahid Khan 5

  • 1 Department of Mathematics, Faculty of Science, University of Jordan, Amman 11942, Jordan - (i.shbeil@ju.edu.jo)
  • 2 Faculty of Information Technology, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates - (wael.salameh@adu.ac.ae)
  • 3 Department of Mathematical Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates - (j.gong@uaeu.ac.ae)
  • 4 Department of Mathematical Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates - (ajmalkhan@aust.edu.pk)
  • 5 Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan - (drshahidmaths761@aust.edu.pk)
  • Doi: https://doi.org/10.54216/IJNS.260419

    Received: February 05, 2025 Revised: May 10, 2025 Accepted: June 09, 2025
    Abstract

    In this paper, we introduce and investigate new generalized subclasses of neutrosophic n-fold symmetric bi-univalent functions defined in the open unit disk U . These subclasses are characterized via four neutrosophic multi-parameters κ, ρ, γ, and β, which provide a flexible framework to capture the truth, indeterminacy, and falsity components inherent in geometric and analytic behaviors. Within this neutrosophic setting, we derive upper bounds for the initial coefficients |dn+1| and |d2n+1|, and establish generalized Fekete–Szeg˝o inequalities for the considered classes. The results obtained extend and unify several existing results in classical and neutrosophic bi-univalent function theory. Examples and corollaries are presented to demonstrate the sharpness and applicability of the results.

    Keywords :

    Neutrosophic analysis , Analytic functions , Univalent functions , Bi-univalent functions , Coefficient bounds , v-fold symmetric functions

    References

    [1] Mocanu,P. Une propriete de convexity generalisee dans la theorie de la representation conforme. Mathematica (Cluj) 11, 127-133, 1969(in French).

     

    [2] Duren, P.L. Univalent Functions; Grundlehren der MathematischenWissenschaften Series, 259; Springer: New York, NY, USA, 1983.

     

    [3] Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68.

     

    [4] Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of starlike functions. Canad. J. Math. 1970, 22, 476–485.

     

    [5] Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 1984, 5, 559–568.

     

    [6] Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Math. Anal. Its Appl. 1985, 3, 18.21.

     

    [7] Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192.

     

    [8] B.a. Frasin, M.K. Aouf, New subclass of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573.

     

    [9] Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60..

     

    [10] Tang, H.; Deng, G.; Li, S. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Ineq. Appl. 2013, 317.

     

    [11] Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 2014, 43, 383–389.

     

    [12] Attiya, A.A.; Yassen, M.F. A class of Analytic and Bi-Univalent Symmetry Associated with Srivastava- Attiya Operator, Symmetry 2022, 14(10), 2006.

     

     [13] Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain class of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13-123.

     

    [14] Murugusundaramoorthy, G.; Vijaya, K. Certain subclasses of analytic functions associated with generalized telephone numbers. Symmetry 2022, 14, 1053.

     

    [15] Totoi, A.; Cotˆırl˘a, L.I. Preserving classes of meromorphic functions through integral operators. Symmetry 2022, 14, 1545.

     

    [16] S¸ eker, B. On a new subclass of bi-univalent functions defined by using Salagean operator. Turkish Journal of Mathematics. 2018, 42 (6), 2891-2896.

     

    [17] Srivastava, H. M.; S¨umer Eker, S.; Ali, R.M. Coefficient bounds forSymmetryin class of analytic and bi-univalent functions, Filomat, 2015, 29(8), 1839-1843.

     

    [18] Ahmad, A.; Gong, J.; Al-Shbeil, I.; Rasheed A.; Ali, A.; Hussain, S. Analytic Functions Related to a Balloon-Shaped Domain. Fractal Fract. 2023, 7(12), 865.

     

    [19] Al-shbeil, I.; Gong, J.; Shaba, T.G. Coefficients Inequalities for the Bi-Univalent Functions Related to q-Babalola Convolution Operator. Fractal Fract. 2023, 7(2), 155.

     

    [20] Khan, M.G.; Khan, B.; Gong, J.; Tchier, F.; Tawfiq, F.M.O. Applications of First-Order Differential Subordination for Subfamilies of AnSymmetryunctions Related to Symmetric Image Domains, Symmetry. 2023, 15(11), 2004.

     

    [21] Koepf, W. Coefficient of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc., 105, 324-329, (1989).

     

    [22] Pommerenke, C. Univalent functions, Vandenhoeck & Ruprecht, Gottingen, (1975).

     

    [23] Zaprawa, P. On the Fekete-Szeg¨o problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 2014, 21, 169-178.

     

    [24] Srivastava, H. M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficient bounds for a subclass of v-fold symmetric bi-univalent functions, Tbilisi Math. J., 2014, 7 (2), 1-10.

     

    [25] Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficients estimate for some subclasses of m-fold sym- metric bi-univalent functions. Acta Univ. Apulensis Math. Inform. 2015, 41, 153–164.

     

    [26] Srivastava, H.M.; Gaboury, S.; Ghanim, F. Initial coefficients estimate for some subclasses of m-fold symmetric bi-univalent functions. Acta Math. Sci. Ser. B, 2016, 36, 863–971.

     

    [27] Srivastava, H.M.; Zireh, A.; Hajiparvaneh, S. Coefficients estimate for some subclasses of m-fold sym- metric bi-univalent functions. Filomat, 2018, 32, 3143–3153.

     

    [28] Sakar, F.M.; Tasar, N. Coefficients bounds for certain subclasses of m-fold symmetric bi-univalent functions. New Trends Math. Sci. 2019, 7, 62–70.

     

    [29] A. K. Gupta and S. R. Bansal, ”On the Coefficient Bounds for Certain Classes of Bi-Univalent Functions,” Journal of Mathematical Analysis and Applications, vol. 494, no. 1, pp. 123-134, 2021.

     

    [30] Bulut, S.; Salehian, S.; Motamednezhad, A. Comprehensive subclass of m-fold symmetric biunivalent functions defined by subordination. Afr. Mat. 2021, 32, 531–541.

     

    [31] Swamy, S.R.; Frasin,B.A.; Aldawish, I. Fekete–Szeg˝o functional problem for a special family of m-fold symmetric bi-univalent functions. Mathematics, 2022, 10, 1165.

     

    [32] Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions, Studia Universitatis Babe¸s-Bolyai Mathematica, 31 (2), 70-77, (1986).

     

    [33] Taha, T. S. Topics in univalent function theory, Ph.D. Thesis, University of London, (1981).

     

    [34] Minda, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis (Conference Proceedings and Lecture Notes in Analysis); Li, J., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1994; Volume I, pp. 157–169.

     

    [35] L. Chen and M. Zhang, ”New Results on the Fekete-Szeg¨o Problem for Bi-Univalent Functions,” Mathematics, vol. 9, no. 12, pp. 1556, 2021.

     

    [36] Hamidi, S.G.; Jahangiri, J.M. Unpredictability of the coefficients of m-fold symmetric bi-starlike functions. International Journal of Mathematics, 2014, 25(07), 1450064.

     

    [37] S¨umer Eker, S.Coefficient bounds for subclasses of m-fold symmetric bi- univalent functions, Turkish J Math, 2016, 40, 641–646.

     

    [38] Murugusundaramoorthy, G.; Cotˆırla, L.-I. Bi-univalent functions of complex order defined by the Hohlov operator associated with Legendre polynomial. AIMS Math. 2022, 7, 8733–8750.

     

    [39] Altinkaya, S.; Yalcin, S. Coefficient bounds for certain subclasses of v- fold symmetric bi-univalent functions, Journal of Mathematics, Article ID 241683, 5 pp, (2015).

     

    [40] Pommerenke, C. On the coefficients of close-to-convex functions, Michigan. Math. J. 9 (1962), 259269.

     

    [41] Zaprawa, P. Estimates of Initial Coefficients for Bi-Univalent Functions, Abstract and Applied Analysis. Volume 2014, Article ID 357480.

     

    [42] Fekete, M.; Szeg˝o, G. Eine Bemerkung ¨uber ungerade schlichte functionen. J. Lond. Math. Soc. 1933, 8, 85–89.

     

    [43] Altinkaya, S.; Yalcin, S. On some subclasses of v-fold symmetric bi-univalent functions, arXiv:1603.01120v1 [math.CV] 3 Mar 2016.

     

    [44] P´all-Szab´o, ´A.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics, 2020, 8, 1110.

     

    [45] R. Ali and H. M. Srivastava, ”Coefficient Estimates for a Class of m-fold Symmetric Bi-Univalent Functions,” AIMS Mathematics, vol. 7, no. 6, pp. 10482-10495, 2022.

    Cite This Article As :
    Al-Shbeil, Isra. , Mahmoud, Wael. , Gong, Jianhua. , Khan, Ajmal. , Khan, Shahid. Coefficient Bounds for Generalized n-Fold Symmetric Neutrosophic Bi-univalent Functions. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 204-218. DOI: https://doi.org/10.54216/IJNS.260419
    Al-Shbeil, I. Mahmoud, W. Gong, J. Khan, A. Khan, S. (2025). Coefficient Bounds for Generalized n-Fold Symmetric Neutrosophic Bi-univalent Functions. International Journal of Neutrosophic Science, (), 204-218. DOI: https://doi.org/10.54216/IJNS.260419
    Al-Shbeil, Isra. Mahmoud, Wael. Gong, Jianhua. Khan, Ajmal. Khan, Shahid. Coefficient Bounds for Generalized n-Fold Symmetric Neutrosophic Bi-univalent Functions. International Journal of Neutrosophic Science , no. (2025): 204-218. DOI: https://doi.org/10.54216/IJNS.260419
    Al-Shbeil, I. , Mahmoud, W. , Gong, J. , Khan, A. , Khan, S. (2025) . Coefficient Bounds for Generalized n-Fold Symmetric Neutrosophic Bi-univalent Functions. International Journal of Neutrosophic Science , () , 204-218 . DOI: https://doi.org/10.54216/IJNS.260419
    Al-Shbeil I. , Mahmoud W. , Gong J. , Khan A. , Khan S. [2025]. Coefficient Bounds for Generalized n-Fold Symmetric Neutrosophic Bi-univalent Functions. International Journal of Neutrosophic Science. (): 204-218. DOI: https://doi.org/10.54216/IJNS.260419
    Al-Shbeil, I. Mahmoud, W. Gong, J. Khan, A. Khan, S. "Coefficient Bounds for Generalized n-Fold Symmetric Neutrosophic Bi-univalent Functions," International Journal of Neutrosophic Science, vol. , no. , pp. 204-218, 2025. DOI: https://doi.org/10.54216/IJNS.260419