Volume 26 , Issue 3 , PP: 302-313, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Anas Al-Masarwah 1 * , Fawziah Alharthi 2 , Noor Bani Abd Al-Rahman 3
Doi: https://doi.org/10.54216/IJNS.260322
Recent years have witnessed remarkable developments in fuzzy logic, with interval-valued fuzziness and negative structures emerging as powerful tools for modeling inaccurate phenomena. The crossing cubic structures (CCs), as a generalization of the bipolar fuzziness structures, represent a comprehensive mathematical framework capable of dealing with a wide range of fuzziness and contradictory data, thus expanding research prospects in this area. This paper has made a new contribution to some algebraic structures by investigating the concept of CCs on algebraic substructures in a hoop algebra. The concepts of crossing cubic sub-hoops (CC − SHs) and crossing cubic filters (CCFs) are introduced, and a deeper understanding is sought to analyze their characteristics. The effect on the relationship between CC − SHs and CCFs is revealed, and the characterizations of CC − SHs and CCFs are analyzed.
Hoop algebras , Sub-Hoops , Filters , Crossing cubic structures , Crossing cubic sub-hoops , Crossing cubic filters
[1] B. Bosbach. Komplement¨are halbgruppen, axiomatik und arithmetik. Fund. Math., 64(3): 257—287,1969.
[2] B. Bosbach. Komplement¨are halbgruppen, kongruenzen und quotienten. Fund. Math., 69(1): 1–14, 1970
[3] J. R. Buchi, T. M.Owens. Complemented monoids and hoops. Unpublished manuscript, 1975.
[4] W.J. Blok, D. Pigozzi. On the structure of varieties with equationally definable principal congruences, III. Algebra Universalis, 32(4): 545–608, 1994.
[5] I. M. A. Ferreirim. On varieties and quasi varieties of hoops and their reducts. PhD thesis. University of Illinois at Chicago, 1992.
[6] P. Aglian, I. M. Ferreirim, F. Montagna. Basic hoops: An algebraic study of continuous t-norms. Studia Logica, 87(1): 73-98, 2007.
[7] F. Esteva, L. Godo. Monoidal t-norm based logic, towards a logic for left- continuous t-norms. Fuzzy Sets Syst.,124(3): 271–288, 2001.
[8] T. Kowalski, H. Ono. Residuated lattices: An algebraic glimpse at logic without contraction. Japan Advanced Institute of Science and Technology, 2001.
[9] G. Georgescu, L. Leustean, V. Preoteasa. Pseudo-hoops. J. Mult.-Valued Log. Soft Comput., 11(1-2): 153–184, 2005.
[10] L. A. Zadeh. Fuzzy sets. Inf. Control, 8(3): 338–353, 1965.
[11] A. Rosenfeld. Fuzzy groups. J. Math. Anal. Appl., 35(3): 512–517, 1971.
[12] T. Head. A metatheorem for deriving fuzzy theorems from crisp versions. Fuzzy Sets. Syst., 73(3): 349– 358, 1995.
[13] I. Jahan. The lattice of L-ideals of a ring is modular. Fuzzy Sets. Syst., 199: 121–129, 2012.
[14] K. T. Atanassov. Intuitionistic fuzzy sets. Int. J. Bioautomation., 20: 1–6, 2016.
[15] S. Tan, P. Wang, E. Lee. Fuzzy set operations based on the theory of falling shadows. J. Math. Anal. Appl. , 174(1): 242–255, 1993.
[16] L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning-i. Inf. Sci., 8(3): 199–249, 1975.
[17] Y. B. Jun, K. Hur, J. G. Lee, J. and Kim. Crossing cubic structures as an extension of bipolar fuzzy sets. Ann. Fuzzy Math. Inform., 22(1): 1–15, 2021.
[18] M. A. Ozt¨urk, D. Yılmaz, Y. B. Jun. Semigroup structures and commutative ideals of BCK-algebras based on crossing cubic set structures. Axioms, 11(1): 25, 2022.
[19] A. Al-Masarwah, N. Kdaisat, M. Abuqamar and K. Alsager. Crossing cubic Lie algebras. AIMS Math., 9(8): 22112–22129, 2024.
[20] N. B. A. Al-Rahman, A. Al-Masarwah, A. U. Alkouri. Algebraic aspects of crossing cubic BE-algebras. Fuzzy Inf. Eng., 17(1): 20–38, 2025.
[21] R. A. Borzooei, M. A. Kologani. On fuzzy filters of hoop-algebras. J. Fuzzy. Math., 25(1): 177–195, 2017.
[22] A. Namdar. Fuzzy n-fold fantastic filters on hoop algebras. J. algebr. hyperstrucres log. algebr., 4(2): 189–203, 2023.
[23] M. Aaly Kologani, R. A. Borzooei, H. S. Kim, Y. B. Jun, S. S. Ahn. Construction of some algebras of logics by using intuitionistic fuzzy filters on hoops. AIMS Math., 6(11): 11950–11973, 2021.
[24] R. A. Borzooei, G. R. Rezaei, M. A. Kologhani, Y. B. Jun. Falling shadow theory with applications in hoops. Bull. Sect. Log., 50(3): 337–353, 2021.
[25] M. M. Takallo, M. A. Kologani, Y. B. Jun, R. A. Borzooei. Lukasiewicz fuzzy filters in hoops. J. Algebr. Syst., 12(1): 1–20, 2024.
[26] M. Abuqamar, A.G. Ahmad, N. Hassan. The algebraic structure of normal groups associated with Q- neutrosophic soft sets. Neutrosophic Sets Syst., 48(1): 328–338, 2022.