International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 26 , Issue 3 , PP: 302-313, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Crossing Cubic Structures Applied to Hoop Algebras

Anas Al-Masarwah 1 * , Fawziah Alharthi 2 , Noor Bani Abd Al-Rahman 3

  • 1 Department of Mathematics, Faculty of Science, Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan - (almasarwah85@gmail.com)
  • 2 Department of Mathematics, College of Science, Qassim University, Buraydah, Saudi Arabia - (f.alharthi@qu.edu.sa)
  • 3 Department of Mathematics, Faculty of Science, Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan - (noorbaniabdalrahman@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.260322

    Received: January 29, 2025 Revised: February 25, 2025 Accepted: April 08, 2025
    Abstract

    Recent years have witnessed remarkable developments in fuzzy logic, with interval-valued fuzziness and negative structures emerging as powerful tools for modeling inaccurate phenomena. The crossing cubic structures (CCs), as a generalization of the bipolar fuzziness structures, represent a comprehensive mathematical framework capable of dealing with a wide range of fuzziness and contradictory data, thus expanding research prospects in this area. This paper has made a new contribution to some algebraic structures by investigating the concept of CCs on algebraic substructures in a hoop algebra. The concepts of crossing cubic sub-hoops (CC − SHs) and crossing cubic filters (CCFs) are introduced, and a deeper understanding is sought to analyze their characteristics. The effect on the relationship between CC − SHs and CCFs is revealed, and the characterizations of CC − SHs and CCFs are analyzed.

    Keywords :

    Hoop algebras , Sub-Hoops , Filters , Crossing cubic structures , Crossing cubic sub-hoops , Crossing cubic filters

    References

    [1] B. Bosbach. Komplement¨are halbgruppen, axiomatik und arithmetik. Fund. Math., 64(3): 257—287,1969.

    [2] B. Bosbach. Komplement¨are halbgruppen, kongruenzen und quotienten. Fund. Math., 69(1): 1–14, 1970

    [3] J. R. Buchi, T. M.Owens. Complemented monoids and hoops. Unpublished manuscript, 1975.

    [4] W.J. Blok, D. Pigozzi. On the structure of varieties with equationally definable principal congruences, III. Algebra Universalis, 32(4): 545–608, 1994.

    [5] I. M. A. Ferreirim. On varieties and quasi varieties of hoops and their reducts. PhD thesis. University of Illinois at Chicago, 1992.

    [6] P. Aglian, I. M. Ferreirim, F. Montagna. Basic hoops: An algebraic study of continuous t-norms. Studia Logica, 87(1): 73-98, 2007.

    [7] F. Esteva, L. Godo. Monoidal t-norm based logic, towards a logic for left- continuous t-norms. Fuzzy Sets Syst.,124(3): 271–288, 2001.

    [8] T. Kowalski, H. Ono. Residuated lattices: An algebraic glimpse at logic without contraction. Japan Advanced Institute of Science and Technology, 2001.

    [9] G. Georgescu, L. Leustean, V. Preoteasa. Pseudo-hoops. J. Mult.-Valued Log. Soft Comput., 11(1-2): 153–184, 2005.

    [10] L. A. Zadeh. Fuzzy sets. Inf. Control, 8(3): 338–353, 1965.

    [11] A. Rosenfeld. Fuzzy groups. J. Math. Anal. Appl., 35(3): 512–517, 1971.

    [12] T. Head. A metatheorem for deriving fuzzy theorems from crisp versions. Fuzzy Sets. Syst., 73(3): 349– 358, 1995.

    [13] I. Jahan. The lattice of L-ideals of a ring is modular. Fuzzy Sets. Syst., 199: 121–129, 2012.

    [14] K. T. Atanassov. Intuitionistic fuzzy sets. Int. J. Bioautomation., 20: 1–6, 2016.

    [15] S. Tan, P. Wang, E. Lee. Fuzzy set operations based on the theory of falling shadows. J. Math. Anal. Appl. , 174(1): 242–255, 1993.

    [16] L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning-i. Inf. Sci., 8(3): 199–249, 1975.

    [17] Y. B. Jun, K. Hur, J. G. Lee, J. and Kim. Crossing cubic structures as an extension of bipolar fuzzy sets. Ann. Fuzzy Math. Inform., 22(1): 1–15, 2021.

    [18] M. A. Ozt¨urk, D. Yılmaz, Y. B. Jun. Semigroup structures and commutative ideals of BCK-algebras based on crossing cubic set structures. Axioms, 11(1): 25, 2022.

    [19] A. Al-Masarwah, N. Kdaisat, M. Abuqamar and K. Alsager. Crossing cubic Lie algebras. AIMS Math., 9(8): 22112–22129, 2024.

    [20] N. B. A. Al-Rahman, A. Al-Masarwah, A. U. Alkouri. Algebraic aspects of crossing cubic BE-algebras. Fuzzy Inf. Eng., 17(1): 20–38, 2025.

    [21] R. A. Borzooei, M. A. Kologani. On fuzzy filters of hoop-algebras. J. Fuzzy. Math., 25(1): 177–195, 2017.

    [22] A. Namdar. Fuzzy n-fold fantastic filters on hoop algebras. J. algebr. hyperstrucres log. algebr., 4(2): 189–203, 2023.

    [23] M. Aaly Kologani, R. A. Borzooei, H. S. Kim, Y. B. Jun, S. S. Ahn. Construction of some algebras of logics by using intuitionistic fuzzy filters on hoops. AIMS Math., 6(11): 11950–11973, 2021.

    [24] R. A. Borzooei, G. R. Rezaei, M. A. Kologhani, Y. B. Jun. Falling shadow theory with applications in hoops. Bull. Sect. Log., 50(3): 337–353, 2021.

    [25] M. M. Takallo, M. A. Kologani, Y. B. Jun, R. A. Borzooei. Lukasiewicz fuzzy filters in hoops. J. Algebr. Syst., 12(1): 1–20, 2024.

     

    [26] M. Abuqamar, A.G. Ahmad, N. Hassan. The algebraic structure of normal groups associated with Q- neutrosophic soft sets. Neutrosophic Sets Syst., 48(1): 328–338, 2022.

    Cite This Article As :
    Al-Masarwah, Anas. , Alharthi, Fawziah. , Bani, Noor. Crossing Cubic Structures Applied to Hoop Algebras. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 302-313. DOI: https://doi.org/10.54216/IJNS.260322
    Al-Masarwah, A. Alharthi, F. Bani, N. (2025). Crossing Cubic Structures Applied to Hoop Algebras. International Journal of Neutrosophic Science, (), 302-313. DOI: https://doi.org/10.54216/IJNS.260322
    Al-Masarwah, Anas. Alharthi, Fawziah. Bani, Noor. Crossing Cubic Structures Applied to Hoop Algebras. International Journal of Neutrosophic Science , no. (2025): 302-313. DOI: https://doi.org/10.54216/IJNS.260322
    Al-Masarwah, A. , Alharthi, F. , Bani, N. (2025) . Crossing Cubic Structures Applied to Hoop Algebras. International Journal of Neutrosophic Science , () , 302-313 . DOI: https://doi.org/10.54216/IJNS.260322
    Al-Masarwah A. , Alharthi F. , Bani N. [2025]. Crossing Cubic Structures Applied to Hoop Algebras. International Journal of Neutrosophic Science. (): 302-313. DOI: https://doi.org/10.54216/IJNS.260322
    Al-Masarwah, A. Alharthi, F. Bani, N. "Crossing Cubic Structures Applied to Hoop Algebras," International Journal of Neutrosophic Science, vol. , no. , pp. 302-313, 2025. DOI: https://doi.org/10.54216/IJNS.260322