Volume 26 , Issue 3 , PP: 242-258, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Waleed Al-Rawashdeh 1 *
Doi: https://doi.org/10.54216/IJNS.260317
This paper introduces two new classes of bi-Bazilevic and bi-univalent functions that are defined using Borel distribution and Ruscheweyh operator, which also associated with Legendre polynomials and modified Sig-moid function within the open unit disk D. This paper explores the characteristics and behaviors of these functions, we find estimates for the modulus of the initial Taylor series coefficients a2 and a3 for functions within our newly defined classes and some of their various subclasses. Moreover, this paper explores the classical Fekete-SzegÖ functional problem concerning functions f that are classified within our specific classes. Additionally, we obtain the classical Fekete-SzegÖ inequalities of functions belonging to these classes and some of their various subclasses.
Bi-Univalent Functions , Bi-Bazilevic , Borel Distribution , Ruscheweyh operator , Modified Sig-moid Function , Legendre Polynomials , Coefficient estimates , Fekete-Szeg¨ , o functional problem , Convolution , Hadamard Product
[1] V. Aboites, Easy Route to Tchebycheff Polynomials, Revista Mexicana de Fisica, Vol. 65 (2019), 12-14.
[2] W. Al-Rawashdeh, Fekete-Szeg¨o functional of a subclass of bi-univalent functions associated with Gegenbauer polynomials, European Journal of Pure and Applied Mathematics, Vol. 17, No. 1, 2024, 105-115.
[3] A. S. El-Shahed and R. A. M. Ali, ”A Study on the Coefficient Estimates for Certain Classes of Analytic Functions,” Journal of Mathematical Inequalities, vol. 14, no. 3, pp. 123-135, 2020.
[4] L. J. Smith and H. P. Zhang, ”Exploring the Applications of Orthogonal Polynomials in Complex Analysis,” Mathematics and Computer Science, vol. 12, no. 4, pp. 456-469, 2021.
[5] W. Al-Rawashdeh, A Class of Non-Bazilevic Functions Subordinate to Gegenbauer Polynomials, Inter-national Journal of Analysis and Applications, Vol. 22, No. 29, 2024.
[6] D.A. Brannan and J.G. Clunie, Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Institute (University of Durham, Durham; July 1–20, 1979), Academic Press, New York and London
[7] M. Ca˘glar, H. Orhan and M. Kamali, Fekete-Szeg¨o problem for a subclass of analytic functions associated with Chebyshev polynomials, Boletim da Sociedade Paranaense de Matem´atica, 40(2022), 1–6.
[8] Y. Cheng, R. Srivastava and J.L. Liu, Applications of the q−Derivative operator to new families of bi- univalent functions related to the Legendre polynomials, Axioms 2022, 11, 595, 1-13.
[9] J.H. Choi, Y.C. Kim and T. Sugawa, A general approach to the Fekete-Szeg¨o problem, Journal of the Mathematical Society of Japan, Vol. 59(2007), 707–727.
[10] P. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, 1983.
[11] P. Duren, Subordination in Complex Analysis, Lecture Notes in Mathematics, Springer, Berlin, Germany, (1977) 599, 22-29.
[12] S.M. El-Deeb, G. Murugusundaramoorthy and A. Alburaikan, Bi-Bazilevic functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials, Journal of Mathematics and Computer Science, 24(3)(2022), 235—245.
[13] P. Goel and S. Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malaysian Math. Sci. Society, Vol.43 (2020), 957–991.
[14] A. W. Goodman, Univalent Functions, 2 volumes, Mariner Publishing Co. Inc., 1983.
[15] S. G. Krantz, Geometric Function Theory: Explorations in Complex Analysis, Birkh¨auser, Boston, Basel, Berlin, 2005.
[16] M. Kamali, M. Ca˘glar, E. Deniz and M. Turabaev, Fekete Szeg¨o problem for a new subclass of analytic functions satisfying subordinate condition associated with Chebyshev polynomials, Turkish J. Math., 45, (2021), 1195-1208.
[17] F.R. Keogh and E.P. Merkes, A Coefficient inequality for certain classes of analytic functions, Proceedings of the American Mathematical Society, 20(1969), 8-12.
[18] M. Fekete and G. Szeg¨o, Eine Bemerkung ¨Uber ungerade Schlichte Funktionen, Journal of LondonMathematical Society, s1-8(1933), 85-89.
[19] M. Lewin, On a coefficient problem for bi-univalent functions, Proceedings of the American Mathematical Society, 18(1)(1967), 63-68.
[20] N. Magesh and S. Bulut, Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Afrika Matematika, 29(1-2)(2018), 203-209.
[21] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
[22] S. Miller and P. Mocabu, Differential Subordination: Theory and Applications, CRC Press, New York, 2000.
[23] E. Muthaiyan and A. Wanas, On some coefficient inqualities involving Legendre polynomials in the class of bi-univalent functions, Turkish Journal of Inequalities, 7 (2) (2023), pages 39-46.
[24] G. Murugusundaramoorthy and T. Janani, Sigmoid function in the space of univalent λ-pseudo starlike functions, Int. J. Pure Appl. Math. Sci., 101(2015), 33-41.
[25] A. B. Johnson and C. D. Lee, ”New Developments in the Theory of Univalent Functions,” International Journal of Mathematical Sciences, vol. 18, no. 2, pp. 200-215, 2023.
[26] G. Murugusundaramoorthy and S. M. El-Deeb, Second Hankel determinant for a class of analytic functions of the Mittag-Leffler-type Borel distribution related with Legendre polynomials, TWMS J. App. And Eng. Mathematics, 12(4)(2022), 1247-1258.
[27] Z. Nehari, Conformal Mappings, McGraw-Hill, New York, 1952.
[28] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Archive for Rational Mechanics and Analysis, 32(2), 100-112 (1969).
[29] A. Raposo, H. Weber, D. Alvarez-Castillo and M. Kirchbach, Romanovski polynomials in selected physics problems, Central European Journal of Physics, 5(3) 2007, 253-284.
[30] S.O. Olatunji, E.J. Dansu and A. Abidemi, On a Sakaguchi type class of analytic functions associated with quasi-subordination in the space of modified Sigmoid functions, Electron. J. Math. Anal. Appl., 5, (2017), 97-105.
[31] K. Rilely, M. Hobson and S. Bence, Mathematical Methods for Physics and Engineering, Third Edition, Cambridge University Press, Cambridge, UK, 2006.
[32] S. Ruscheweyh, New criteria for univalent functions, Proceedings of the American Mathematical Society, (1975) 49, 109-115.
[33] H. M. Srivastava, H. L. Manocha, A treatise on generating functions, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
[34] H. M. Srivastava, M. Kamali and A. Urdaletova, A study of the Fekete-Szeg¨o functional and coefficient estimates forvsubclasses of analytic functions satisfying a certain subordination conditions and associated with the Gegenbauer polynomials, AIMS Mathematics, 7(2)(2021), 2568-2584.
[35] A.K. Wanas and J.A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline J. Math Sci. 2020, 4(1), 71-82.