International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 26 , Issue 2 , PP: 279-291, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

On the generalized numerical radii of operators

M. Abu Saleem 1 , Khalid Shebrawi 2 * , Tasnim Alkharabsheh 3

  • 1 Department of Mathematics, Faculty of Science, Al-Balqa Applied University, Salt 19117, Jordan - (m_abusaleem@bau.edu.jo)
  • 2 Department of Mathematics, Faculty of Science, Al-Balqa Applied University, Salt 19117, Jordan - (khalid@bau.edu.jo)
  • 3 Department of Mathematics, Faculty of Science, Al-Balqa Applied University, Salt 19117, Jordan - (tasnim.kh.92@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.260221

    Received: January 07, 2025 Revised: February 09, 2025 Accepted: March 13, 2025
    Abstract

    It is shown that if A, B,X, and Y are operators acting on a finite dimensional Hilbert space, then. ωu (AXB∗ ± BYA∗) ≤ 2 ∥A∥ ∥B∥ ωu ([0 X, Y 0]) where ωu (T ), ∥T ∥, are, respectively, the U-numerical radius, the spectral norm, of an operator T .

    Keywords :

    Numerical radius , Spectral norm , Hilbert Schmidt norm , Hermitian operator , Positive operator , Inequality

    References

    [1] A. Aldalabih, F. Kittaneh, Hilbert-Schmidt numerical radius inequalities for operator matrices, Linear Algebra Appl. 581 (2019) 72-84.

    [2] S. Jana, P. Bhunia, and K. Paul, ”Euclidean operator radius and numerical radius inequalities,” arXiv preprint arXiv:2308.09252, (2023)

    [3] K. Feki, ”Some athbbA-numerical radius inequalities for d¨imesd operator matrices,” arXiv preprint arXiv:2003.14378, (2020)

    [4] N. C. Rout, S. Sahoo, and D. Mishra, ”On A-numerical radius inequalities for 2¨imes2 operator matrices,” arXiv preprint arXiv:2004.07494(2020)

    [5] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, (1997).

    [6] C. K. Fong and J. A. R. Holbrook, Unitarily invariant operator norms, Canad. J. Math. 35 (1983) 274– 299.

    [7] O. Hirzallah and F. Kittaneh, Numerical radius inequalities for several operators, Math. Scand. 114 (2014) 110–119.

    [8] M. Ito, H. Nakazato, K. Okubo and T. Yamazaki, On generalized numerical range of the Aluthge transformation, Linear Algebra Appl. 370 (2003) 147–161.

    [9] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007) 83-89.

    [10] A. Zamani, A-numerical radius inequalities for semi-Hilbertian space operators, Linear Algebra Appl. 578 (2019) 159–183.

     

    Cite This Article As :
    Abu, M.. , Shebrawi, Khalid. , Alkharabsheh, Tasnim. On the generalized numerical radii of operators. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 279-291. DOI: https://doi.org/10.54216/IJNS.260221
    Abu, M. Shebrawi, K. Alkharabsheh, T. (2025). On the generalized numerical radii of operators. International Journal of Neutrosophic Science, (), 279-291. DOI: https://doi.org/10.54216/IJNS.260221
    Abu, M.. Shebrawi, Khalid. Alkharabsheh, Tasnim. On the generalized numerical radii of operators. International Journal of Neutrosophic Science , no. (2025): 279-291. DOI: https://doi.org/10.54216/IJNS.260221
    Abu, M. , Shebrawi, K. , Alkharabsheh, T. (2025) . On the generalized numerical radii of operators. International Journal of Neutrosophic Science , () , 279-291 . DOI: https://doi.org/10.54216/IJNS.260221
    Abu M. , Shebrawi K. , Alkharabsheh T. [2025]. On the generalized numerical radii of operators. International Journal of Neutrosophic Science. (): 279-291. DOI: https://doi.org/10.54216/IJNS.260221
    Abu, M. Shebrawi, K. Alkharabsheh, T. "On the generalized numerical radii of operators," International Journal of Neutrosophic Science, vol. , no. , pp. 279-291, 2025. DOI: https://doi.org/10.54216/IJNS.260221