International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 26 , Issue 2 , PP: 241-250, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Clean Graphs over Rings of Order P^2

Heba Adel Abdelkarim 1 , Edris Rawashdeh 2 , Eman Rawshdeh 3 *

  • 1 Department of Mathematics, Irbid National University, Irbid, Jordan - (dr.heba@inu.edu.jo)
  • 2 Department of Mathematics, Yarmouk University, Irbid, Jordan - (edris@yu.edu.jo)
  • 3 Department of Basic Scientific Sciences, Al-Huson University College, Al-Balqa Applied University, Irbid, Jordan - (eman.rw@bau.edu.jo)
  • Doi: https://doi.org/10.54216/IJNS.260218

    Received: January 10, 2025 Revised: March 02, 2025 Accepted: March 13, 2025
    Abstract

    Assume R is a commutative ring with unity. The clean graph CL(R) is defined in which every vertex has the form (a, v), where a is an idempotent in R and v is a unit. In CL(R), two distinct vertices (a1, v1) and (a2, v2) are adjacent if a1a2 = a2a1 = 0 or v1v2 = v2v1 = 1. In this paper, we show that the clean graph CL(R) over a ring of order p2 can be defined only if R is one of the rings: Zp2 ,Zp ⊕Zp,Zp(+)Zp and GF(p2). Then, we study the spectrum, the biclique partition number, and the eigensharp property for the these clean graphs.

    Keywords :

    Commutative Ring , Clean Graph , Spectrum of graph , Biclique partition number , Eigensharp graph

    References

    [1] H. A. Abdelkarim, The Geodetic Number for the Unit Graphs Associated with Rings of Order P and P2, Symmetry, 15, 1799 (2023).

    [2] S. Akbari, M.Habibi, A. Majidinya, and R. Manaviyat, On the Idempotent Graph of a Ring, Journal of Algebra and Its Applications, 12 (6), 1350003 (2013).

    [3] S. Akbari, D. Kiani, F. Mohammadi and S. Moradi, The Total Graph and Regular Graph of a Commutative Ring, Journal of Pure and Applied Algebra, 213: 2224-2228 (2009).

    [4] D. F. Anderson and M. Naseer, ”Beck’s Coloring of a Commutative Ring,” Journal of Algebra, vol. 159, no. 2, pp. 500–514, (2021)

    [5] D. Anderson and A. Badawi, The Total Graph of a Commutative Ring, Journal of Algebra, 320: 2706- 2719 (2008).

    [6] R. G. Artes and Jr. R. D. Dignos, Tree Covers of Graphs, Applied Mathematical Sciences, 8 (150): 7469 - 7473 (2014).

    [7] I. Beck. Coloring of Commutative Rings. Journal of Algebra, 116(1): 208-226 (1988).

    [8] M. Dutta, S. Kalita , H. K. Saikia, Graphs in Automata, Electronic Journal of Mathematical Analysis and Applications Vol. 10(2) Jul: 105-114 (2022).

    [9] B. Fine, Classification of Finite Rings of Order p2, Mathematics Magazine, 66(4): 248-252 (1993).

    [10] G. Fan, Covering Graphs by Cycles, SIAM Journal on Discrete Mathematics, 5 (4): 491–496 (1992).

    [11] E. Ghorbani and H.R. Maimani,. On Eigensharp and Almost Eigensharp Graphs, Linear Algebra and its Applications429: 2746-2753 (2008).

    [12] R.L. Graham and H.O. Pollak, On the Addressing Problem for Loop Switching, Bell System Technical Journal, 50: 2495-2519 (1971).

    [13] M. Habibi, E. Y. Celikel, and C. Abdioglu, Clean Graph of a Ring, Journal of Algebra and Its Applications, 20(9): 2150156 (2021).

    [14] T. Kratzke and B, Reznick, West, D. Eigensharp graphs: Decomposition into Complete Bipartite Subgraphs. Transactions of the AMS - American Mathematical Society, 308,: 637-653 (1988) .

    [15] D.S. Nau, G. Markowski, M. A. Woodbury and D. B. Amos A Mathematical Analysis of Human Leukocyte Antigen Serology, Mathematical Biosciences 40: 243-270 (1978).

    [16] W. K. Nicholson, Lifting Idempotents and Exchange Rings, Transactions of the AMS - American Mathematical Society, 229: 269-278 (1977).

    [17] Z. Z. Petrovi´c, and Z. Pucanovi´c, The Clean Graph of a Commutative Ring, Ars Combinatoria, 134: 363-378 (2017).

    [18] T. Pinto. Biclique Covers and Partitions, The Electronic Journal of Combinatoric 21: 1-19 (2014).

    [19] V. Ramanathan, C. Selvaraj, A. Altaf, and S. Pirzada. Classification of Rings Associated with the Genus of Clean Graphs, Algebra Colloquium, 31: 451-466 (2024).

    [20] E. Rawashdeh, H.A. Abdelkarim, E. Rawshdeh, The Spectrum of Certain Large Block Matrix, Euorpean Journal of pure and applied mathematics, 17 (4): 2550-2561 (2024).

    [21] W. C. Waterhouse, Rings with Cyclic Additive Group, The American Mathematical Monthly, 71: 449- 450 (1964).

     

    Cite This Article As :
    Adel, Heba. , Rawashdeh, Edris. , Rawshdeh, Eman. Clean Graphs over Rings of Order P^2. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 241-250. DOI: https://doi.org/10.54216/IJNS.260218
    Adel, H. Rawashdeh, E. Rawshdeh, E. (2025). Clean Graphs over Rings of Order P^2. International Journal of Neutrosophic Science, (), 241-250. DOI: https://doi.org/10.54216/IJNS.260218
    Adel, Heba. Rawashdeh, Edris. Rawshdeh, Eman. Clean Graphs over Rings of Order P^2. International Journal of Neutrosophic Science , no. (2025): 241-250. DOI: https://doi.org/10.54216/IJNS.260218
    Adel, H. , Rawashdeh, E. , Rawshdeh, E. (2025) . Clean Graphs over Rings of Order P^2. International Journal of Neutrosophic Science , () , 241-250 . DOI: https://doi.org/10.54216/IJNS.260218
    Adel H. , Rawashdeh E. , Rawshdeh E. [2025]. Clean Graphs over Rings of Order P^2. International Journal of Neutrosophic Science. (): 241-250. DOI: https://doi.org/10.54216/IJNS.260218
    Adel, H. Rawashdeh, E. Rawshdeh, E. "Clean Graphs over Rings of Order P^2," International Journal of Neutrosophic Science, vol. , no. , pp. 241-250, 2025. DOI: https://doi.org/10.54216/IJNS.260218