Volume 26 , Issue 1 , PP: 94-107, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
M. Mala 1 * , M. Mary Jansirani 2 *
Doi: https://doi.org/10.54216/IJNS.260108
This paper introduces the concept of -(3,2) ƒuzzy ᵴemigroups within an -ᵴemigroup and explore their characterizations. Various comparable conditions for -(3,2) ƒuzzy normal subᵴemigroups are established. Additionally, the -(3,2) ƒuzzy coset, -(3,2) ƒuzzy ideal, -(3,2) ƒuzzy symmetric ᵴemigroup and -(3,2) ƒuzzy normal subᵴemigroups are defined. The idea of conjugate -(3,2) ƒuzzy ᵴemigroups is also introduced, and the order of an -(3,2) ƒuzzy ᵴemigroup is determined. The (3,2) ƒuzzy semigroup condition applied to decision making process also.
-ᵴemigroups[SSG] , -&fnof , uzzy ᵴemigroups[SFSG] , -&fnof , uzzy normal subᵴemigroup[SFNSG] , -(3,2) &fnof , uzzy ᵴemigroups[S(3,2)FSG] , -non (3,2) &fnof , uzzy ᵴemigroups[SN(3,2)FSG] ,   , - strong (3,2) &fnof , uzzy ᵴemigroups[SS(3,2)FSG] , -(3,2) &fnof , uzzy normal subᵴemigroups[S(3,2)FNSSG] , -(3,2) &fnof , uzzy Ideals [S(3,2)FI] , -(3.2) &fnof , uzzy hyper subᵴemigroup[S(3,2)FHSSG] , -(3,2) &fnof , uzzy subᵴemigroup[S(3,2)FSSG] -conjugate (3,2) &fnof , uzzy subᵴemigroups[SC(3,2)FSSG] , -(3,2) &fnof , uzzy symmetric ᵴemigroup[S(3,2)FSYSG] ,   , -(3,2) &fnof , uzzy coset [S(3,2)FC]
[1] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, no. 3, pp. 338–353, 1965.
[2] A. Rosenfeld, "Fuzzy groups," Journal of Mathematical Analysis and Applications, vol. 35, pp. 512–517, 1971.
[3] F. Smarandache, Special Algebraic Structures in Collected Papers, vol. III, Abaddaba, Oradea: American Research Press, 2000, pp. 78–81.
[4] W. B. V. Kandasamy, Smarandache Semigroups, Rehoboth, NM: American Research Press, 2002.
[5] W. B. V. Kandasamy, Smarandache Fuzzy Algebra, Rehoboth, NM: American Research Press, 2003.
[6] H. R. Yassein and M. O. Karim, "On Smarandache M-semigroup," Journal of Al-Qadisiya for Pure Science, vol. 3, no. 1, pp. 71–76, 2011.
[7] A. P. J. Allen, H. S. Kim, and J. Neggers, "Smarandache algebras and their subgroups," Bulletin of the Iranian Mathematical Society, vol. 38, no. 4, pp. 1063–1077, 2012.
[8] R. R. Yager, "Pythagorean fuzzy subsets," in Proc. 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, Canada, 2013, pp. 57–61.
[9] S. K. Mohammed, "Some results on Smarandache semigroups," Journal of Kufa for Mathematics and Computer, vol. 1, no. 7, pp. 33–36, Dec. 2013.
[10] M. Ali, "Smarandache soft semigroups and their properties," Journal of New Theory, vol. 1, pp. 80–88, 2015.
[11] R. Gowri and T. Rajeswari, "S-α fuzzy semigroups," International Journal of Mathematical Sciences and Engineering Applications, vol. 9, no. 1, pp. 307–318, Mar. 2015.
[12] R. A. Doss and S. Suganya, "Smarandache Q-fuzzy semigroups," Advances in Fuzzy Mathematics (AFM), vol. 11, no. 1, pp. 89–97, 2016.
[13] R. Gowri and T. Rajeswari, "Smarandache-alpha fuzzy normal subsemigroups in Smarandache-alpha fuzzy semigroups," Proceedings of the National Academy of Sciences, India, Section A: Physical Sciences, vol. 90, pp. 777–781, 2020.
[14] H. Z. Ibrahim, T. M. Al-Shami, and O. G. Elbarbary, "(3,2)-Fuzzy sets and their applications to topology and optimal choices," Computational Intelligence and Neuroscience, vol. 2021, no. 1, 2021.
[15] A. Iampan, N. Rajesh, and S. Shanthi, "Abelian subgroups based on (3, 2)-fuzzy sets," IAENG International Journal of Computer Science, vol. 49, no. 3, Sep. 2022.
[16] M. Vanishri, N. Rajesh, N. Rafi, and R. Bandaru, "Ideal theory of semigroups based on (3, 2)-fuzzy sets," Journal of Mathematics and Computer Science, vol. 28, pp. 182–191, 2023.