International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 3 , PP: 561-572, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Neutrosophic fuzzy metric spaces and fixed points results with integral contraction type

Anwar Bataihah 1 * , Ayman A. Hazaymeh 2

  • 1 Department of Mathematics, Faculty of Science, Jadara University, Irbid, Jordan - (a.bataihah@jadara.edu.jo)
  • 2 Department of Mathematics, Faculty of Science, Jadara University, Irbid, Jordan - (aymanha@jadara.edu.jo)
  • Doi: https://doi.org/10.54216/IJNS.250344

    Received: July 9, 2024 Revised: September 30, 2024 Accepted: November 14, 2024
    Abstract

    In this study, we introduce fixed point theorems related to integral type contractions, framed within the advanced context of neutrosophic fuzzy metric spaces. Additionally, we derive multiple fixed point results that are relevant to this particular setting.

    Keywords :

    Fixed point , Neutrosophic fuzzy metric , Integral contraction

    References

    [1] Zadeh, LA. (1965) Fuzzy sets, Inf Comp, 8, 338–353.

    [2] Atanassov K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.

    [3] Smarandache, F. (2005) Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Inter J Pure Appl Math, 24, 287–297.

    [4] Turksen, I. (1996) Interval valued fuzzy sets based on normal forms, Fuzzy Sets and Systems, 20, 191–210.

    [5] Atanassov K., Gargov G. (1989) Interval valued intuitionistic fuzzy sets, Inf Comp, 31, 343–349.

    [6] Smarandache, F. (2003) A unifying field in logics: Neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability and statistics. Phoenix, Xiquan.

    [7] Yager, R.R. (2013) Pythagorean fuzzy subsets. Proc Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada, 2013.

    [8] Barbosa, R.P. and Smarandache, F., 2024. Neutrosophic One-Round Zero-Knowledge Proof. Plithogenic Logic and Computation, 2, pp.49-54.

    [9] Abd Elwahed, H., Alburaikan, A. and Smarandache, F., 2024. On characterizing efficient and properly efficient solutions for multi-objective programming problems in a complex space. Journal of Optimization in Industrial Engineering, 16(2), pp.369-375.

    [10] M. H. S. R. Arif, A. S. Malik, and M. M. Hassan, "Fuzzy soft sets and their applications in decision making: A comprehensive survey," J. Intell. Fuzzy Syst., vol. 42, no. 5, pp. 4937-4951, 2022.

    [11] S. R. M. K. R. Abed, M. T. Ghanbari, and M. N. El-Basyuni, "Time-dependent fuzzy soft sets and their application in decision-making problems," Soft Comput., vol. 26, no. 4, pp. 1059-1072, 2022.

    [12] Al-Qudah, Y., Al-Sharqi, F., Mishlish, M., & Rasheed, M. M. (2023). Hybrid integrated decision-making algorithm based on AO of possibility interval-valued neutrosophic soft settings. International Journal of Neutrosophic Science, 22(3), 84 - 98.

    [13] Al-Qudah, Y. , Al-Sharqi, F. 2023. Algorithm for decision-making based on similarity measures of possibility interval-valued neutrosophic soft setting settings. International Journal of Neutrosophic Science, 22(3), pp. 69–83.

    [14] Hazaymeh, A. (2024). Time Effective Fuzzy Soft Set and Its Some Applications with and Without a Neutrosophic. International Journal of Neutrosophic Science, (2), 129-29.

    [15] Al-Qudah, Y. (2024). A robust framework for the decision-making based on single-valued neutrosophic fuzzy soft expert setting. International Journal of Neutrosophic Science, 23(2), 195-95.

    [16] M U Romdhini, F Al-Sharqi, A Nawawi, A Al-Quran, and H Rashmanlou. Signless Laplacian energy of interval-valued fuzzy graph and its applications. Sains Malaysiana, 52(7):2127–2137, 2023.

    [17] Banach, S.(1922). Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales. fund. math, 3, 133-181.

    [18] Hatamleh, R., and Hazaymeh, A. (2024). On Some Topological Spaces Based On Symbolic n-Plithogenic Intervals. International Journal of Neutrosophic Science, 25(1), 23-3.

    [19] A. Bataihah. Some fixed point results with application to fractional differential equation via new type of distance spaces. Results in Nonlinear Analysis 2024, 7, 202–208.

    [20] Z. N. Khan, A. S. Malik, and S. F. Khan, "Time-dependent fuzzy soft sets and their application in multi-criteria decision-making," Fuzzy Sets Syst., vol. 413, pp. 1-16, 2021.

    [21] Karapınar, E., & fulga, A. (2023). Discussions on Proinov-Cb-Contraction Mapping on-Metric Space.Journal of function Spaces, 2023(9), 1-10.

    [22] Karapınar, E., Romaguera, S., & Tirado, P. (2022). Characterizations of quasi-metric and G-metric completeness involving ω-distances and fixed points. Demonstratio Mathematica, 55(1), 939-951.

    [23] A. Bataihah, T. Qawasmeh, (2024). A new type of distance spaces and fixed point Results, Journal of Mathematical Analysis, 15(4), 81–90.

    [24] Bataihah, A., Qawasmeh, T.,& Shatnawi, M. (2022). Discussion on b-metric spaces and related results in metric and G-metric spaces. Nonlinear functional Analysis and Applications 27, no. 2, 233-247.

    [25] Shatanawi, W., Bataihah, A. (2021). Remarks on G-Metric Spaces and Related Fixed Point Theorems, Thai Journal of Mathematics, 19(2), 445–455. https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1168

    [26] S¸IMS¸EK, Necip, and Murat KIRIS¸ CI. Fixed point theorems in Neutrosophic metric spaces. Infinite Study, 2019.

    [27] Das, S., Roy, B.K., Kar, M.B., Kar, S. and Pamuˇcar, D., 2020. Neutrosophic fuzzy set and its application in decision making. Journal of Ambient Intelligence and Humanized Computing, 11, pp.5017-5029.

    [28] Menger, K. ”Statistical Metrics.” Proceedings of the National Academy of Sciences of the United States of America 28, no. 12 (1942): 535-537.

    [29] Kiris¸ci, M., & S¸ims¸ek, N. (2020). Neutrosophic metric spaces. Mathematical Sciences, 14(3), 241-248.

    [30] Ghosh, S., Sonam, Bhardwaj, R. and Narayan, S., 2024. On Neutrosophic Fuzzy Metric Space and Its Topological Properties. Symmetry, 16(5), p.613.

    [31] Liu, Z., Li, X., Kang, S.M. and Cho, S.Y., 2011. Fixed point theorems for mappings satisfying contractive conditions of integral type and applications. Fixed point theory and Applications, 2011, pp.1-18.

    Cite This Article As :
    Bataihah, Anwar. , A., Ayman. Neutrosophic fuzzy metric spaces and fixed points results with integral contraction type. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 561-572. DOI: https://doi.org/10.54216/IJNS.250344
    Bataihah, A. A., A. (2025). Neutrosophic fuzzy metric spaces and fixed points results with integral contraction type. International Journal of Neutrosophic Science, (), 561-572. DOI: https://doi.org/10.54216/IJNS.250344
    Bataihah, Anwar. A., Ayman. Neutrosophic fuzzy metric spaces and fixed points results with integral contraction type. International Journal of Neutrosophic Science , no. (2025): 561-572. DOI: https://doi.org/10.54216/IJNS.250344
    Bataihah, A. , A., A. (2025) . Neutrosophic fuzzy metric spaces and fixed points results with integral contraction type. International Journal of Neutrosophic Science , () , 561-572 . DOI: https://doi.org/10.54216/IJNS.250344
    Bataihah A. , A. A. [2025]. Neutrosophic fuzzy metric spaces and fixed points results with integral contraction type. International Journal of Neutrosophic Science. (): 561-572. DOI: https://doi.org/10.54216/IJNS.250344
    Bataihah, A. A., A. "Neutrosophic fuzzy metric spaces and fixed points results with integral contraction type," International Journal of Neutrosophic Science, vol. , no. , pp. 561-572, 2025. DOI: https://doi.org/10.54216/IJNS.250344