International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 3 , PP: 450-468, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

On The Weak Fuzzy Complex Differential Equations and Some Types of the 1st Order 1st degree WFC-ODEs

Hussein Edduweh 1 , Ahmed Salem Heilat 2 * , Lama Razouk 3 , Sara A. Khalil 4 , Ahmed Atallah Alsaraireh 5 * , Abdallah Al-Husban 6

  • 1 Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019-0407, USA - (Husseinsaid.edduweh@mavs.uta.edu)
  • 2 Department of Mathematics, Faculty of Science and Information Technology, Jadara University, P.O. Box 733, Irbid 21110, Jordan - (ahmed_heilat@yahoo.com)
  • 3 Department of Mathematics, Faculty of Sciences, Tishreen University, Latakia, Syria - (Lamarazouk94@gmail.com)
  • 4 Mathematics Department, Faculty of Science, Applied Science Private University (ASU) Amman, Jordan - (s_khalil@asu.edu.jo)
  • 5 The university of Jordanā€“Aqaba Department of computer information systems, Jordan - (a.alsarairah@ju.edu.jo)
  • 6 Department of Mathematics, Faculty of Science and Technology, Irbid National University, P.O. Box: 2600 Irbid, Jordan - (dralhosban@inu.edu.jo)
  • Doi: https://doi.org/10.54216/IJNS.250338

    Received: March 25, 2024 Revised: June 26, 2024 Accepted: November 10, 2024
    Abstract

    The objective of this paper is to introduce the concept of Weak Fuzzy Complex differential equations. We have defined the general solution of the n-th order Weak Fuzzy Complex ordinary differential equation. That we have used a special isomorphism transformation function to write the WFC-ODE as two Real ODEs and solved them with respect to their own variables. Then, by the inverse of the transformation function, we have got the general solution in F (J) as a structure of two general solutions in R. Therefore, we have shown some types of first-order first-degree separable, exact, and linear WFC-ODEs. Also, we have found their general solutions with examples to demonstrate them.

    Keywords :

    Weak Fuzzy Complex (WFC) Numbers , Weak Fuzzy Complex Functions , Differential Equations (DE)

    References

    [1]     M. Abualhomos, W.M.M. Salameh, M. Bataineh, M.O. Al-Qadri, A. Alahmade, A. Al-Husban, An Effective Algorithm for Solving Weak Fuzzy Complex Diophantine Equations in Two Variables, (2024).  https://doi.org/10.54216/IJNS.230431.

    [2]     A.M.A. Alfahal, M. Abobala, Y.A. Alhasan, R.A. Abdulfatah, Generating Weak Fuzzy Complex  and Anti Weak Fuzzy Complex Integer Solutions for Pythagoras Diophantine Equation X2 + Y2 = Z2, International Journal of Neutrosophic  Science 22 (2023) 8–14. https://doi.org/10.54216/IJNS.220201.

    [3]     Y.A. Alhasan, A.M.A. Alfahal, R.A. Abdulfatah, G. Nordo, M.M.A. Zahra, On Some Novel Results About Weak Fuzzy Complex Matrices, International Journal of Neutrosophic Science 21 (2023) 134–140. https://doi.org/10.54216/IJNS.210112.

    [4]     Y.A. Alhasan, L. Xu, R.A. Abdulfatah, A.M.A. Alfahal, The Geometrical Characterization for The Solutions of a Vectorial Equation By Using Weak Fuzzy Complex Numbers and Other Generalizations Of Real Numbers, International Journal of Neutrosophic Science 21 (2023) 155–159. https://doi.org/10.54216/IJNS.210415.

    [5]     R. Ali, On The Weak Fuzzy Complex Inner Products On Weak Fuzzy Complex Vector Spaces, Neoma Journal of Mathematics and Computer Science 1 (2023).https://doi.org/10.5281/zenodo.7953682.

    [6]     G. Birkhoff, G.C. Rota, ORDINARY DIFFERENTIAL EQUATIONS, Wiley, 1991.

    [7]     F.C. Galarza, M.L. Flores, D.P. Rivero, M. Abobala, On Weak Fuzzy Complex Pythagoras Quadruples, International Journal of Neutrosophic Science 22 (2023) 108–113. https://doi.org/10.54216/IJNS.220209.

    [8]     W. Gander, M.J. Gander, F. Kwok, Scientiļ¬c computing-An Introduction using Maple and MATLAB, Springer, 2014.

    [9]     A. Hatip, an Introduction to Weak Fuzzy Complex Numbers, Galoitica: Journal of Mathematical Structures and Applications 3 (2023) 08–13. https://doi.org/10.54216/gjmsa.030101.

    [10]   L. Razouk, S. Mahmoud, M. Ali, On the Foundations of Weak Fuzzy Complex-Real Functions, 5 (2024) 116–140, https://doi.org/10.22105/jfea.2024.435955.1369 .

    [11]   L. Razouk, S. Mahmoud, M. Ali, A Computer Program For The System Of Weak Fuzzy Complex Numbers And Their Arithmetic Operations Using Python, Galoitica: Journal of  Mathematical Structures and Applications 8 (2023) 45–5 https://doi.org/10.54216/gjmsa.080104.

    [12]   Abdallah Shihadeh, Khaled Ahmad Mohammad Matarneh, Raed Hatamleh, Randa Bashir Yousef Hijazeen, Mowafaq Omar Al-Qadri, Abdallah Al-Husban.(2024). An Example of Two-Fold Fuzzy Algebras Based on Neutrosophic Real Numbers.Neutrosophic Sets and Systems, vol.67, pp. 169-178. https://doi.org//10.5281/zenodo.11151930.

    [13]   Abdallah Shihadeh, Khaled Ahmad Mohammad Matarneh, Raed Hatamleh, Mowafaq Omar Al-Qadri, Abdallah Al- Husban,(2024), On The Two-Fold Fuzzy n-Refined Neutrosophic Rings For  2≤n≤3, Neutrosophic Sets and Systems, Vol. 68,pp.8-25.https://doi.org//10.5281/zenodo.11406449.

    [14]   W. Walter, Ordinary Differential Equations, Springer New York, 1998. https://doi.org/10.1007/978-1-4612-0601-9.

    [15]   D.G. Zill, a First Course in Differential Equations with Modeling Application, Brooks/Cole, Cengage Learning., 2008.

    [16]   Heilat, A. S. (2023).Cubic Trigonometric B-spline Method for Solving a Linear System of Second Order Boundary Value Problems. European Journal of Pure and Applied Mathematics, 16(4), 2384-2396. https://doi.org/10.29020/nybg.ejpam.v16i4.4947

    [17]   Heilat, A. S., & Hailat, R. S. (2020). Extended cubic B-spline method for solving a system of non-linear second-order boundary value problems. J. Math. Comput. Sci, 21, 231-242. http://dx.doi.org/10.22436/jmcs.021.03.06.

    [18]   Heilat, A.S.,Qazza,A.,Hatamleh,R.Saadeh,R., Alomari,M.W.(2023). An application of Hayashi's inequality in numerical integration.Open Mathematics, 21(1), 20230162. https://doi.org/10.1515/math-2023-0162.

    [19]   Heilat, A.S., Batiha,B ,T.Qawasmeh ,Hatamleh R.(2023). Hybrid Cubic B-spline Method for Solving A Class of Singular Boundary Value Problems. European Journal of Pure and Applied Mathematics, 16(2), 751-762. https://doi.org/10.29020/nybg.ejpam.v16i2.4725.

    [20]   Ayman Hazaymeh, Ahmad Qazza, Raed Hatamleh, Mohammad W Alomari, Rania Saadeh.(2023). On Further Refinements of Numerical Radius Inequalities, Axiom-MDPI, 12(9), 807.

    [21]   T.Qawasmeh, A. Qazza, R. Hatamleh, M.W. Alomari, R. Saadeh. (2023). Further accurate numerical radius inequalities, Axiom-MDPI, 12 (8), 801.

    [22]   S. Hussain, S. Khan, and M. Younis, "Numerical simulation of sine-Gordon equation using cubic B-spline collocation method," Applied Numerical Mathematics, vol. 158, pp. 240–252, 2021, doi: 10.1016/j.apnum.2020.09.012.

    [23]   Abubaker, Ahmad A, Hatamleh, Raed, Matarneh, Khaled, Al-Husban, Abdallah. (2024). On the Numerica Solutions for Some Neutrosophic Singular Boundary Value Problems by Using (LPM) Polynomials,Inernational Journal of Neutrosophic Science,25(2),197-205. https://doi.org/10.54216/IJNS.250217.

    [24]   Alrwashdeh, Dima. , Alkhouli, Talat. , Soiman, Ahmed. , Allouf, Ali. , Edduweh, Hussein. , Al-Husban, Abdallah.(2025). On Two Novel Generalized Versions of Diffie-Hellman Key Exchange Algorithm Based on Neutrosophic and Split-Complex Integers and their Complexity Analysis. International Journal of Neutrosophic Science, 25(2), pp. 01-10.

    [25]   Abubaker, A. A., Abualhomos, M., Matarneh, K., & Al-Husban, A. (2025). A Numerical Approach For The Algebra of Two-Fold. Neutrosophic Sets and Systems, 75, 181-195.‏

    [26]   A., Ahmad. , Hatamleh, Raed. , Matarneh, Khaled. , Al-Husban, Abdallah. On the Irreversible k-Threshold Conversion Number for Some Graph Products and Neutrosophic Graphs. (2025). International Journal of Neutrosophic Science, 25(2), pp. 183-196.

    [27]   Al-Husban, A., Djenina, N., Saadeh, R., Ouannas, A., & Grassi, G. (2023). A new incommensurate fractional-order COVID 19: modelling and dynamical analysis. Mathematics, 11(3), 555.

    [28]   M. Alkahtani, M. Alsaedi, and F. A. Rihan, "A fractional-order model of COVID-19 with quarantine, isolation, and environmental viral load," Chaos, Solitons & Fractals, vol. 140, p. 110220, 2020, doi: 10.1016/j.chaos.2020.110220.‏

    [29]   Hamadneh, T., Hioual, A., Alsayyed, O., Al-Khassawneh, Y. A., Al-Husban, A., & Ouannas, A. (2023). The FitzHugh–Nagumo Model Described by Fractional Difference Equations: Stability and Numerical Simulation. Axioms, 12(9), 806.

    [30]   Heilat, A. S., Karoun, R. C., Al-Husban, A., Abbes, A., Al Horani, M., Grassi, G., & Ouannas, A. (2023). The new fractional discrete neural network model under electromagnetic radiation: Chaos, control and synchronization. Alexandria Engineering Journal, 76, 391-409.

    [31]   Al-Husban, A., Karoun, R. C., Heilat, A. S., Al Horani, M., Khennaoui, A. A., Grassi, G., & Ouannas, A. (2023). Chaos in a two dimensional fractional discrete Hopfield neural network and its control. Alexandria Engineering Journal, 75, 627-638.

    [32]   Abu Falahah, I., Hioual, A., Al-Qadri, M. O., Al-Khassawneh, Y. A., Al-Husban, A., Hamadneh, T., & Ouannas, A. (2023). Synchronization of Fractional Partial Difference Equations via Linear Methods. Axioms, 12(8), 728.

    [33]   Abu Falahah, I., Hioual, A., Al-Qadri, M. O., Al-Khassawneh, Y. A., Al-Husban, A., Hamadneh, T., & Ouannas, A. (2023). Synchronization of Fractional Partial Difference Equations via Linear Methods. Axioms, 12(8), 728.

    [34]   Hamadneh, T., Abbes, A., Falahah, I. A., Al-Khassawneh, Y. A., Heilat, A. S., Al-Husban, A., & Ouannas, A. (2023). Complexity and chaos analysis for two-dimensional discrete-time predator–prey Leslie–Gower model with fractional orders. Axioms, 12(6), 561.

    [35]   Hamadneh, T., Hioual, A., Alsayyed, O., Al-Khassawneh, Y. A., Al-Husban, A., & Ouannas, A. (2023). Finite Time Stability Results for Neural Networks Described by Variable-Order Fractional Difference Equations. Fractal and Fractional, 7(8), 616.

    [36]   Abu Falahah, I., Hioual, A., Al-Qadri, M. O., Al-Khassawneh, Y. A., Al-Husban, A., Hamadneh, T., & Ouannas, A. (2023). Synchronization of Fractional Partial Difference Equations via Linear Methods. Axioms, 12(8), 728.

    Cite This Article As :
    Edduweh, Hussein. , Salem, Ahmed. , Razouk, Lama. , A., Sara. , Atallah, Ahmed. , Al-Husban, Abdallah. On The Weak Fuzzy Complex Differential Equations and Some Types of the 1st Order 1st degree WFC-ODEs. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 450-468. DOI: https://doi.org/10.54216/IJNS.250338
    Edduweh, H. Salem, A. Razouk, L. A., S. Atallah, A. Al-Husban, A. (2025). On The Weak Fuzzy Complex Differential Equations and Some Types of the 1st Order 1st degree WFC-ODEs. International Journal of Neutrosophic Science, (), 450-468. DOI: https://doi.org/10.54216/IJNS.250338
    Edduweh, Hussein. Salem, Ahmed. Razouk, Lama. A., Sara. Atallah, Ahmed. Al-Husban, Abdallah. On The Weak Fuzzy Complex Differential Equations and Some Types of the 1st Order 1st degree WFC-ODEs. International Journal of Neutrosophic Science , no. (2025): 450-468. DOI: https://doi.org/10.54216/IJNS.250338
    Edduweh, H. , Salem, A. , Razouk, L. , A., S. , Atallah, A. , Al-Husban, A. (2025) . On The Weak Fuzzy Complex Differential Equations and Some Types of the 1st Order 1st degree WFC-ODEs. International Journal of Neutrosophic Science , () , 450-468 . DOI: https://doi.org/10.54216/IJNS.250338
    Edduweh H. , Salem A. , Razouk L. , A. S. , Atallah A. , Al-Husban A. [2025]. On The Weak Fuzzy Complex Differential Equations and Some Types of the 1st Order 1st degree WFC-ODEs. International Journal of Neutrosophic Science. (): 450-468. DOI: https://doi.org/10.54216/IJNS.250338
    Edduweh, H. Salem, A. Razouk, L. A., S. Atallah, A. Al-Husban, A. "On The Weak Fuzzy Complex Differential Equations and Some Types of the 1st Order 1st degree WFC-ODEs," International Journal of Neutrosophic Science, vol. , no. , pp. 450-468, 2025. DOI: https://doi.org/10.54216/IJNS.250338