Volume 25 , Issue 3 , PP: 450-468, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Hussein Edduweh 1 , Ahmed Salem Heilat 2 * , Lama Razouk 3 , Sara A. Khalil 4 , Ahmed Atallah Alsaraireh 5 * , Abdallah Al-Husban 6
Doi: https://doi.org/10.54216/IJNS.250338
The objective of this paper is to introduce the concept of Weak Fuzzy Complex differential equations. We have defined the general solution of the n-th order Weak Fuzzy Complex ordinary differential equation. That we have used a special isomorphism transformation function to write the WFC-ODE as two Real ODEs and solved them with respect to their own variables. Then, by the inverse of the transformation function, we have got the general solution in F (J) as a structure of two general solutions in R. Therefore, we have shown some types of first-order first-degree separable, exact, and linear WFC-ODEs. Also, we have found their general solutions with examples to demonstrate them.
Weak Fuzzy Complex (WFC) Numbers , Weak Fuzzy Complex Functions , Differential Equations (DE)
[1] M. Abualhomos, W.M.M. Salameh, M. Bataineh, M.O. Al-Qadri, A. Alahmade, A. Al-Husban, An Effective Algorithm for Solving Weak Fuzzy Complex Diophantine Equations in Two Variables, (2024). https://doi.org/10.54216/IJNS.230431.
[2] A.M.A. Alfahal, M. Abobala, Y.A. Alhasan, R.A. Abdulfatah, Generating Weak Fuzzy Complex and Anti Weak Fuzzy Complex Integer Solutions for Pythagoras Diophantine Equation X2 + Y2 = Z2, International Journal of Neutrosophic Science 22 (2023) 8–14. https://doi.org/10.54216/IJNS.220201.
[3] Y.A. Alhasan, A.M.A. Alfahal, R.A. Abdulfatah, G. Nordo, M.M.A. Zahra, On Some Novel Results About Weak Fuzzy Complex Matrices, International Journal of Neutrosophic Science 21 (2023) 134–140. https://doi.org/10.54216/IJNS.210112.
[4] Y.A. Alhasan, L. Xu, R.A. Abdulfatah, A.M.A. Alfahal, The Geometrical Characterization for The Solutions of a Vectorial Equation By Using Weak Fuzzy Complex Numbers and Other Generalizations Of Real Numbers, International Journal of Neutrosophic Science 21 (2023) 155–159. https://doi.org/10.54216/IJNS.210415.
[5] R. Ali, On The Weak Fuzzy Complex Inner Products On Weak Fuzzy Complex Vector Spaces, Neoma Journal of Mathematics and Computer Science 1 (2023).https://doi.org/10.5281/zenodo.7953682.
[6] G. Birkhoff, G.C. Rota, ORDINARY DIFFERENTIAL EQUATIONS, Wiley, 1991.
[7] F.C. Galarza, M.L. Flores, D.P. Rivero, M. Abobala, On Weak Fuzzy Complex Pythagoras Quadruples, International Journal of Neutrosophic Science 22 (2023) 108–113. https://doi.org/10.54216/IJNS.220209.
[8] W. Gander, M.J. Gander, F. Kwok, Scientiļ¬c computing-An Introduction using Maple and MATLAB, Springer, 2014.
[9] A. Hatip, an Introduction to Weak Fuzzy Complex Numbers, Galoitica: Journal of Mathematical Structures and Applications 3 (2023) 08–13. https://doi.org/10.54216/gjmsa.030101.
[10] L. Razouk, S. Mahmoud, M. Ali, On the Foundations of Weak Fuzzy Complex-Real Functions, 5 (2024) 116–140, https://doi.org/10.22105/jfea.2024.435955.1369 .
[11] L. Razouk, S. Mahmoud, M. Ali, A Computer Program For The System Of Weak Fuzzy Complex Numbers And Their Arithmetic Operations Using Python, Galoitica: Journal of Mathematical Structures and Applications 8 (2023) 45–5 https://doi.org/10.54216/gjmsa.080104.
[12] Abdallah Shihadeh, Khaled Ahmad Mohammad Matarneh, Raed Hatamleh, Randa Bashir Yousef Hijazeen, Mowafaq Omar Al-Qadri, Abdallah Al-Husban.(2024). An Example of Two-Fold Fuzzy Algebras Based on Neutrosophic Real Numbers.Neutrosophic Sets and Systems, vol.67, pp. 169-178. https://doi.org//10.5281/zenodo.11151930.
[13] Abdallah Shihadeh, Khaled Ahmad Mohammad Matarneh, Raed Hatamleh, Mowafaq Omar Al-Qadri, Abdallah Al- Husban,(2024), On The Two-Fold Fuzzy n-Refined Neutrosophic Rings For 2≤n≤3, Neutrosophic Sets and Systems, Vol. 68,pp.8-25.https://doi.org//10.5281/zenodo.11406449.
[14] W. Walter, Ordinary Differential Equations, Springer New York, 1998. https://doi.org/10.1007/978-1-4612-0601-9.
[15] D.G. Zill, a First Course in Differential Equations with Modeling Application, Brooks/Cole, Cengage Learning., 2008.
[16] Heilat, A. S. (2023).Cubic Trigonometric B-spline Method for Solving a Linear System of Second Order Boundary Value Problems. European Journal of Pure and Applied Mathematics, 16(4), 2384-2396. https://doi.org/10.29020/nybg.ejpam.v16i4.4947
[17] Heilat, A. S., & Hailat, R. S. (2020). Extended cubic B-spline method for solving a system of non-linear second-order boundary value problems. J. Math. Comput. Sci, 21, 231-242. http://dx.doi.org/10.22436/jmcs.021.03.06.
[18] Heilat, A.S.,Qazza,A.,Hatamleh,R.Saadeh,R., Alomari,M.W.(2023). An application of Hayashi's inequality in numerical integration.Open Mathematics, 21(1), 20230162. https://doi.org/10.1515/math-2023-0162.
[19] Heilat, A.S., Batiha,B ,T.Qawasmeh ,Hatamleh R.(2023). Hybrid Cubic B-spline Method for Solving A Class of Singular Boundary Value Problems. European Journal of Pure and Applied Mathematics, 16(2), 751-762. https://doi.org/10.29020/nybg.ejpam.v16i2.4725.
[20] Ayman Hazaymeh, Ahmad Qazza, Raed Hatamleh, Mohammad W Alomari, Rania Saadeh.(2023). On Further Refinements of Numerical Radius Inequalities, Axiom-MDPI, 12(9), 807.
[21] T.Qawasmeh, A. Qazza, R. Hatamleh, M.W. Alomari, R. Saadeh. (2023). Further accurate numerical radius inequalities, Axiom-MDPI, 12 (8), 801.
[22] S. Hussain, S. Khan, and M. Younis, "Numerical simulation of sine-Gordon equation using cubic B-spline collocation method," Applied Numerical Mathematics, vol. 158, pp. 240–252, 2021, doi: 10.1016/j.apnum.2020.09.012.
[23] Abubaker, Ahmad A, Hatamleh, Raed, Matarneh, Khaled, Al-Husban, Abdallah. (2024). On the Numerica Solutions for Some Neutrosophic Singular Boundary Value Problems by Using (LPM) Polynomials,Inernational Journal of Neutrosophic Science,25(2),197-205. https://doi.org/10.54216/IJNS.250217.
[24] Alrwashdeh, Dima. , Alkhouli, Talat. , Soiman, Ahmed. , Allouf, Ali. , Edduweh, Hussein. , Al-Husban, Abdallah.(2025). On Two Novel Generalized Versions of Diffie-Hellman Key Exchange Algorithm Based on Neutrosophic and Split-Complex Integers and their Complexity Analysis. International Journal of Neutrosophic Science, 25(2), pp. 01-10.
[25] Abubaker, A. A., Abualhomos, M., Matarneh, K., & Al-Husban, A. (2025). A Numerical Approach For The Algebra of Two-Fold. Neutrosophic Sets and Systems, 75, 181-195.
[26] A., Ahmad. , Hatamleh, Raed. , Matarneh, Khaled. , Al-Husban, Abdallah. On the Irreversible k-Threshold Conversion Number for Some Graph Products and Neutrosophic Graphs. (2025). International Journal of Neutrosophic Science, 25(2), pp. 183-196.
[27] Al-Husban, A., Djenina, N., Saadeh, R., Ouannas, A., & Grassi, G. (2023). A new incommensurate fractional-order COVID 19: modelling and dynamical analysis. Mathematics, 11(3), 555.
[28] M. Alkahtani, M. Alsaedi, and F. A. Rihan, "A fractional-order model of COVID-19 with quarantine, isolation, and environmental viral load," Chaos, Solitons & Fractals, vol. 140, p. 110220, 2020, doi: 10.1016/j.chaos.2020.110220.
[29] Hamadneh, T., Hioual, A., Alsayyed, O., Al-Khassawneh, Y. A., Al-Husban, A., & Ouannas, A. (2023). The FitzHugh–Nagumo Model Described by Fractional Difference Equations: Stability and Numerical Simulation. Axioms, 12(9), 806.
[30] Heilat, A. S., Karoun, R. C., Al-Husban, A., Abbes, A., Al Horani, M., Grassi, G., & Ouannas, A. (2023). The new fractional discrete neural network model under electromagnetic radiation: Chaos, control and synchronization. Alexandria Engineering Journal, 76, 391-409.
[31] Al-Husban, A., Karoun, R. C., Heilat, A. S., Al Horani, M., Khennaoui, A. A., Grassi, G., & Ouannas, A. (2023). Chaos in a two dimensional fractional discrete Hopfield neural network and its control. Alexandria Engineering Journal, 75, 627-638.
[32] Abu Falahah, I., Hioual, A., Al-Qadri, M. O., Al-Khassawneh, Y. A., Al-Husban, A., Hamadneh, T., & Ouannas, A. (2023). Synchronization of Fractional Partial Difference Equations via Linear Methods. Axioms, 12(8), 728.
[33] Abu Falahah, I., Hioual, A., Al-Qadri, M. O., Al-Khassawneh, Y. A., Al-Husban, A., Hamadneh, T., & Ouannas, A. (2023). Synchronization of Fractional Partial Difference Equations via Linear Methods. Axioms, 12(8), 728.
[34] Hamadneh, T., Abbes, A., Falahah, I. A., Al-Khassawneh, Y. A., Heilat, A. S., Al-Husban, A., & Ouannas, A. (2023). Complexity and chaos analysis for two-dimensional discrete-time predator–prey Leslie–Gower model with fractional orders. Axioms, 12(6), 561.
[35] Hamadneh, T., Hioual, A., Alsayyed, O., Al-Khassawneh, Y. A., Al-Husban, A., & Ouannas, A. (2023). Finite Time Stability Results for Neural Networks Described by Variable-Order Fractional Difference Equations. Fractal and Fractional, 7(8), 616.
[36] Abu Falahah, I., Hioual, A., Al-Qadri, M. O., Al-Khassawneh, Y. A., Al-Husban, A., Hamadneh, T., & Ouannas, A. (2023). Synchronization of Fractional Partial Difference Equations via Linear Methods. Axioms, 12(8), 728.