Volume 25 , Issue 3 , PP: 417-434, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Abdulmtalb Hussen 1 * , Mohamed Illafe 2 , Abdelbaset Zeyani 3
Doi: https://doi.org/10.54216/IJNS.250336
In this paper, a new subclass of bi-univalent functions linked to Lucas-Balancing polynomials is introduced. Bounds for the coefficients in the Taylor-Maclaurin series, denoted as |a2| and |a3|, are determined for these functions. The Fekete-Szeg¨o functional problems are also addressed, and bounds for the second Hankel determinant for functions in this specific subclass are established. Additionally, it is shown that by adjusting the parameters in the main findings, several new results can be derived.
Lucas-Balancing polynomials , bi-univalent functions , analytic functions , Taylor-Maclaurin coefficients , Fekete-Szeg¨ , o functional , second Hankel determinant
[1] Miller, Sanford S., and Petru T. Mocanu. Differential subordinations: theory and applications. CRC Press, 2000.
[2] Duren, P. L. ”Grundlehren der Mathematischen Wissenchaffen.” Univalent Functions; Springer: New York, NY, USA; Berlin/Heidelberg, Germany (1983).
[3] Hussen, Abdulmtalb, and Mohamed Illafe. ”Coefficient Bounds for a Certain Subclass of Bi-Univalent Functions Associated with Lucas-Balancing Polynomials.” Mathematics 11, no. 24 (2023): 4941.
[4] Hussen, Abdulmtalb, and Abdelbaset Zeyani. ”Coefficients and Fekete-Szeg¨o Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials” Mathematics 11, no. 13 (2023): 2852.
[5] Yousef, Feras, Somaia Alroud, and Mohamed Illafe. ”A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind.” Bolet´ın de la Sociedad Matem´atica Mexicana 26 (2020): 329-339.
[6] Illafe, Mohamed, Ala Amourah, and Maisarah Haji Mohd. ”Coefficient estimates and Fekete-Szeg¨o functional inequalities for a certain subclass of analytic and bi-univalent functions.” Axioms 11, no. 4 (2022): 147.
[7] Illafe, Mohamed, Feras Yousef, Maisarah Haji Mohd, and Shamani Supramaniam. ”Initial Coefficients Estimates and Fekete-Szeg¨o Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination.” Axioms 12, no. 3 (2023): 235.
[8] Yousef, Feras, B. A. Frasin, and Tariq Al-Hawary. ”Fekete-Szeg¨o inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials.” Filomat 32 (2018): 3229-3236.
[9] Yousef, Feras, Somaia Alroud, and Mohamed Illafe. ”New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems.” Analysis and Mathematical Physics 11 (2021): 1-12.
[10] Yousef, Feras, Ala Amourah, Basem Aref Frasin, and Teodor Bulboac˘a. ”An avant-Garde construction for subclasses of analytic bi-univalent functions.” Axioms 11, no. 6 (2022): 267.
[11] Aktas¸, ˙Ibrahim, and ˙Inci Karaman. ”On some new subclasses of bi-univalent functions defined by Balancing polynomials.”Karamanoglu Mehmetbey Universitesi Muhendislik ve Doga Bilimleri Dergisi 5,
no. 1 (2023): 25-32.
[12] Amourah, Ala, Basem Aref Frasin, Morad Ahmad, and Feras Yousef. ”Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions.” Symmetry 14, no. 1 (2022): 147.
[13] Noonan, J. W., and D. K. Thomas. ”On the second Hankel determinant of areally mean p-valent functions.” Transactions of the American Mathematical Society 223 (1976): 337-346.
[14] Orhan, Halit, Evrim Toklu, and EKREM KADIOG˘ LU. ”Second Hankel determinant for certain subclasses of bi-univalent functions involving Chebyshev polynomials.” Turkish Journal of Mathematics 42, no. 4 (2018): 1927-1940.
[15] Orhan, Halit, Nanjundan Magesh, and Jagadeesan Yamini. ”Bounds for the second Hankel determinant of certain bi-univalent functions.” Turkish Journal of Mathematics 40, no. 3 (2016): 679-687.
[16] Srivastava, Hari Mohan, Gangadharan Murugusundaramoorthy, and Teodor Bulboac˘a. ”The second Hankel determinant for subclasses of bi-univalent functions associated with a nephroid domain.” Revista de la Real Academia de Ciencias Exactas, F´ısicas y Naturales. Serie A. Matem´aticas 116, no. 4 (2022): 145.
[17] Fekete, M., and G. Szeg¨o. ”Eine Bemerkung ¨uber ungerade schlichte Funktionen.” Journal of the london mathematical society 1, no. 2 (1933): 85-89.
[18] Keogh, F. R., and E. P. Merkes. ”A coefficient inequality for certain classes of analytic functions.” Proceedings of the American Mathematical Society 20, no. 1 (1969): 8-12.
[19] Janteng, Aini, Suzeini Abdul Halim, and Maslina Darus. ”Hankel determinant for starlike and convex functions.” Int. J. Math. Anal 1, no. 13 (2007): 619-625.
[20] Behera, A, and G. K. Panda. ”On the square roots of triangular numbers.” Fibonacci Quarterly 37 (1999): 98-105.
[21] Davala, R. K., and G. K. Panda. ”On sum and ratio formulas for balancing numbers.” Journal of the Ind. Math. Soc 82, no. 1-2 (2015): 23-32.
[22] Frontczak, Robert, and Landesbank Baden-W¨urttemberg. ”A note on hybrid convolutions involving balancing and Lucas-balancing numbers.” Appl. Math. Sci 12, no. 25 (2018): 2001-2008.
[23] Frontczak, Robert, and Landesbank Baden-W¨urttemberg. ”Sums of balancing and Lucas-balancing numbers with binomial coefficients.” Int. J. Math. Anal 12, no. 12 (2018): 585-594.
[24] Panda, Gopal Krishna, Takao Komatsu, and Ravi Kumar Davala. ”Reciprocal sums of sequences involving balancing and lucas-balancing numbers.” Math. Rep 20, no. 70 (2018): 201-214.
[25] Patel, Bijan Kumar, Nurettin Irmak, and Prasanta Kumar Ray. ”Incomplete balancing and Lucasbalancing numbers.” Math. Rep 20, no. 70 (2018): 59-72.
[26] Ray, Prasanta Kumar, and Juli Sahu. ”Generating functions for certain balancing and lucas-balancing numbers.” Palestine Journal of Mathematics 5, no. 2 (2016): 122-129.
[27] Ray, Prasanta Kumar. ”Balancing and Lucas-balancing sums by matrix methods.” Mathematical Reports 17, no. 2 (2015): 225-233.
[28] Berczes, Attila, K. Liptai, and I. Pink. ”On generalized balancing sequences.” Fibonacci Quart 48, no. 2 (2010): 121-128.
[29] Liptai, Kalm´an, Florian Luca, Akos Pint´er, and L´aszl´o Szalay. ”Generalized balancing numbers.” Indagationes mathematicae 20, no. 1 (2009): 87-100.
[30] Frontczak, Robert. ”On balancing polynomials.” Appl. Math. Sci 13, no. 2 (2019): 57-66.
[31] Illafe, Mohamed, Maisarah Haji Mohd, Feras Yousef, and Shamani Supramaniam. ” Bounds for the Second Hankel Determinant of a General Subclass of Bi-Univalent Functions.” International Journal of Mathematical, Engineering and Management Sciences 9, no. 5 (2024): 1226-1239.
[32] Al-Shbeil, Isra, Timilehin Gideon Shaba, and Adriana C˘atas. ”Second Hankel determinant for the subclass of bi-univalent functions using q-Chebyshev polynomial and Hohlov operator.” Fractal and Fractional 6, no. 4 (2022): 186.
[33] Srivastava, Hari Mohan, Gangadharan Murugusundaramoorthy, and Teodor Bulboac˘a. ”The second Hankel determinant for subclasses of bi-univalent functions associated with a nephroid domain.” Revista de la Real Academia de Ciencias Exactas, F´ısicas y Naturales. Serie A. Matem´aticas 116, no. 4 (2022): 145.
[34] Hussen, Abdulmtalb. ”An application of the Mittag-Leffler-type Borel distribution and Gegenbauer polynomials on a certain subclass of bi-univalent functions.” Heliyon 10, no. 10 (2024).
[35] Hussen, Abdulmtalb, Mohammed S.A Madi, and Abobaker M.M Abominjil. ”Bounding coefficients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials.” AIMS Mathematics 9, no. 7 (2024): 18034-18047.
[36] Hussen, Abdulmtalb, and Moamar M. Alamari. ”Bounds on Coefficients for a Subclass of Bi-Univalent Functions with Lucas-Balancing Polynomials and Ruscheweyh Derivative Operator.” Computer Science 19, no. 4 (2024): 1237-1249.
[37] Yousef, A. Ta, Z. Salleh, and Tariq Al-Hawary. ”Coefficient estimates for subclasses Bm Σ (α, λ) and Bm Σ (β, λ) of analytic and bi-univalent functions defined by a differential operator.” Italian Journal of Pure and Applied Mathematics 47, (2022): 70-78.
[38] Pommerenke, Christian. ”Univalent functions.” Vandenhoeck and Ruprecht (1975).
[39] Grenander, Ulf, and Gabor Szeg¨o. Toeplitz forms and their applications. Univ of California Press, 1958.