Volume 25 , Issue 3 , PP: 373-384, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Prakasam Muralikrishna 1 * , Krishnamoorthy Kavitha 2
Doi: https://doi.org/10.54216/IJNS.250333
In this paper, the notion of hesitant fuzzy norm based on the Bag-Samanta’s Type Fuzzy Norm on linear space has been introduced. Further the concepts of ascending family of semi-norms, convergence and fuzzy continuous linear operators are studied in hesitant fuzzy normed linear space.
Hesitant fuzzy norm , Hesitant fuzzy normed linear spaces , Hesitant fuzzy continuous linear operators
[1] C. Alegre, S. Romaguera, Characterizations of fuzzy metrizable topological vector spaces and their asymmetric generalization in terms of fuzzy (quasi-)norms. Fuzzy Sets Syst. 161, 2182–2192 (2010)
[2] T. Bag, S.K. Samanta, Fuzzy bounded linear operators. Fuzzy Sets Syst. 151, 513–547 (2005)
[3] T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 11, 687–705
[4] (2003)
[5] T. Bag, S.K. Samanta, Some fixed point theorems in fuzzy normed linear spaces. Inform. Sci. 177, 3217–3289 (2007)
[6] T. Bag, S.K. Samanta, Fixed point theorems on fuzzy normed linear spaces. Inform. Sci. 176, 2910–2931 (2006)
[7] T. Bînzar, F. Pater, S. N˘ad˘aban, On fuzzy normed algebras. J. Nonlinear Sci. Appl. 9, 5488–5496 (2016)
[8] T. Bag, S.K. Samanta, A comparative study of fuzzy norms on a linear space. Fuzzy Sets Syst. 159, 670–684 (2008)
[9] R.K. Das, B. Mandal, Fuzzy real line structure and metric space. Indian J. pure appl. Math. 33, 565–571 (2002)
[10] S.C. Cheng, J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces. Bull. Calcutta Math. Soc. 86, 429–436 (1994)
[11] D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications (Academic Press, London, 1980)
[12] D. Dubois, H. Prade, Operations on fuzzy numbers. Int. J. Syst. Sci. 9, 613–626 (1978)
[13] I. Dzitac, F.G. Filip, M.J. Manolescu, Fuzzy logic is not fuzzy: World—Renowned computer scientist Lotfi A. Zadeh. Int. J. Comput. Commun. Control 12, 748–789 (2017)
[14] I. Dzitac, The fuzzyfication of classical structures: A general view. Int. J. Comput. Commun. Control 10, 772–788 (2015)
[15] A. George, P. Veeramani, On some results in fuzzy metric spaces. Fuzzy Sets and Syst. 64, 395–399 (1994) 174 S. N˘ad˘aban et al.
[16] C. Felbin, Finite dimensional fuzzy normed liniar space. Fuzzy Sets Syst. 48, 239–248 (1992)
[17] V. Gregori, S. Romaguera, Some properties of fuzzy metric space. Fuzzy Sets Syst. 115, 485– 489 (2000)
[18] I. Gole¸t, On generalized fuzzy normed spaces and coincidence point theorems. Fuzzy Sets and Syst. 161, 1138–1144 (2010)
[19] M. Janfada, H. Baghani, O. Baghani, On Felbin’s-type fuzzy normed linear spaces and fuzzy bounded operators. Iran. J. Fuzzy Syst. 8, 117–130 (2011)
[20] Hadzi c, O, Pap, E, in Fixed Point Theory in Probabilistic Metric Spaces, vol. 536. Mathematics and Its Applications (Kluwer, Dordrecht, 2001)
[21] A.K. Katsaras, D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces. J. Math. Anal. Appl. 58, 135–146 (1977)
[22] O. Kaleva, S. Seikkala, On fuzzy metric spaces. Fuzzy Sets Syst. 12, 215–229 (1984)
[23] A.K. Katsaras, Fuzzy topological vector spaces II. Fuzzy Sets Syst. 12, 143–154 (1984)
[24] A.K. Katsaras, Fuzzy topological vector spaces I. Fuzzy Sets Syst. 6, 85–95 (1981)
[25] A.K. Mirmostafaee, A. Kamel, Perturbation of generalized derivations in fuzzy Menger normed algebras. Fuzzy Sets Syst. 195, 109–117 (2012)
[26] I. Kramosil, J. Michálek, Fuzzy metric and statistical metric spaces. Kybernetica 11, 326–334 (1975)
[27] E.P. Klement, R. Mesiar, E. Pap, in Triangular Norms. (Kluwer, 2000)
[28] S. Nadaban, Fuzzy euclidean normed spaces for data mining applications. Int. J. Comput. Commun. Control. 10(1), 70–77 (2015)
[29] S. Nadaban, Fuzzy continuous mappings in fuzzy normed linear spaces. Int. J. Comput. Commun. Control 10, 834–842 (2015)
[30] M. Mizumoto, J. Tanaka, Some properties of fuzzy numbers, in Advances in Fuzzy Set Theory and Applications, ed. by M.M. Gupta, et al. (North-Holland, New York, 1979), pp. 153–164
[31] S. Nadaban, T. Bînzar, F. Pater, Some fixed point theorems for ϕ-contractive mappings in fuzzy normed linear spaces. J. Nonlinear Sci. Appl. 10, 5668–5676 (2017)
[32] S. Nadaban, T. Bînzar, F. Pater, C. ¸Terei, S. Hoar˘a, Katsaras’s type fuzzy norm under triangular norms. Theory Appl. Math. Comput. Sci. 5, 148–157 (2015)
[33] S. Nadaban, I. Dzitac, Atomic decompositions of fuzzy normed linear spaces for wavelet applications. Informatica 25, 643–662 (2014)
[34] S. Nadaban, Fuzzy pseudo-norms and fuzzy F-spaces. Fuzzy Sets Syst. 282, 99–114 (2016)
[35] I. Sadeqi, A. Amiripour, in Fuzzy Banach algebra. First Joint Congress on Fuzzy and Intelligent Systems, Fedowsi University of Mashhad, Iran, 29–31 Aug 2007
[36] I. Sadeqi, F.S. Kia, Fuzzy normed linear space and its topological structure. Chaos Solitons Fractals 40, 2576–2589 (2009)
[37] R. Saadati, P. Kumam, S.Y. Jang, On the tripled fixed point and tripled coincidence point theorems in fuzzy normed spaces. Fixed Point Theory Appl. (2014). https://doi.org/10.1186/ 1687-1812-2014-136
[38] R. Saadati, S.M. Vaezpour, Some results on fuzzy Banach spaces. J. Appl. Math. Comput. 17, 475–484 (2005)
[39] B. Schweizer, A. Sklar, Statistical metric spaces. Pac. J. Math. 10, 314–334 (1960)
[40] J.Z. Xiao, X.H. Zhu, On linearly topological structures and property of fuzzy normed linear space. Fuzzy Sets Syst. 125, 153–161 (2002)
[41] J.Z. Xiao, X.H. Zhu, Topological degree theory and fixed point theorems in fuzzy normed spaces. Fuzzy Sets Syst. 147, 437–452 (2004)
[42] L.A. Zadeh, Fuzzy Sets. Inform. Control 8, 338–353 (1965)
[43] L.A. Zadeh, Is there a need for fuzzy logic? Inform. Sci. 178, 2751–2779 (2008)
[44] J. Zhu, Y. Wang, C.C. Zhu, Fixed point theorems for contractions in fuzzy normed spaces and intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. (2013). https://doi.org/10.1186/ 1687-1812-2013-79
[45] Hesitant fuzzy sets, https://doi.org/10.1002/int.20418