International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 3 , PP: 307-311, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Spectral Radius Inequalities for Accretive-Dissipative Matrices

Mona Sakkijha 1 , Shatha Hasan 2 *

  • 1 Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan - (m.sakkijha@ju.edu.jo)
  • 2 Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan; Jadara University Research Center, Jadara University, Jordan - (Shatha@bau.edu.jo)
  • Doi: https://doi.org/10.54216/IJNS.250327

    Received: March 17, 2024 Revised: June 10, 2024 Accepted: October 27, 2024
    Abstract

    In this paper, we prove new spectral radius inequalities for sums, differences and commutators involving accretive-dissipative matrices of Hilbert space. Earlier well-known results used the spectral radius for its importance for general matrices. In our paper, we focus on some results related to spectral radius for special kind of matrices which are accretive-dissipative. A particular example is also presented in this work.

    Keywords :

    Spectral radius , Commutators , Accretive-Dissipative Matrices

    References

    [1] A. Abu-Omar and F. Kittaneh (2015),Notes on some spectral radius inequalities,Studia Math, 2875, 97- 109.

    [2] R. Bhatia and F. Kittaneh (2009), The singular values of A + B and A + iB, Linear Algebra its Applications, 431,1502-1508.

    [3] P.R. Halmos, A Hilbert Space Problem Book, 2nd edition, Springer-Verlag, New York, 1982.

    [4] J. C. Hou and H.K.Do (1995), Norm inequalities for positive Operator Matrices, Integral Equations Operator Theory,22, 281-294.

    [5] F. Kittaneh (2004), Normal inequalities for sums and differences of positive operators, Linear Algebra its Applications,383,85-91.

    [6] F. Kittaneh (2005), Spectral Radius Inequalities for Hilbert Space operators, American Mathematical Society, 134,385-390.

    [7] F. Kittaneh (2007), Inequalities for commutators of positive operators, Journal of Functional Analysis, 250, 132-143.

    [8] F. Kittaneh and M. Sakkijha (2019), Inequalities for accretive-dissipative matrices, Linear and Multilinear Algebra, 67, 1037-1042.

    [9] M. Sakkijha and S. Hasan (2024), Hadamard Determinant Inequalities for Accretive-Dissipative Matrices, International Journal of Mathematics and Computer Science, 19,111-116.

    Cite This Article As :
    Sakkijha, Mona. , Hasan, Shatha. Spectral Radius Inequalities for Accretive-Dissipative Matrices. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 307-311. DOI: https://doi.org/10.54216/IJNS.250327
    Sakkijha, M. Hasan, S. (2025). Spectral Radius Inequalities for Accretive-Dissipative Matrices. International Journal of Neutrosophic Science, (), 307-311. DOI: https://doi.org/10.54216/IJNS.250327
    Sakkijha, Mona. Hasan, Shatha. Spectral Radius Inequalities for Accretive-Dissipative Matrices. International Journal of Neutrosophic Science , no. (2025): 307-311. DOI: https://doi.org/10.54216/IJNS.250327
    Sakkijha, M. , Hasan, S. (2025) . Spectral Radius Inequalities for Accretive-Dissipative Matrices. International Journal of Neutrosophic Science , () , 307-311 . DOI: https://doi.org/10.54216/IJNS.250327
    Sakkijha M. , Hasan S. [2025]. Spectral Radius Inequalities for Accretive-Dissipative Matrices. International Journal of Neutrosophic Science. (): 307-311. DOI: https://doi.org/10.54216/IJNS.250327
    Sakkijha, M. Hasan, S. "Spectral Radius Inequalities for Accretive-Dissipative Matrices," International Journal of Neutrosophic Science, vol. , no. , pp. 307-311, 2025. DOI: https://doi.org/10.54216/IJNS.250327