International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 3 , PP: 123-131, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

On A Subclass of Analytic Functions Specified By Touchard Polynomials

Ala Amourah 1 * , 𝐎πͺπ₯𝐚𝐑 𝐀π₯ π‘πžπŸπšπ’ 2 , π“πšπ«π’πͺ 𝐀π₯ π‡πšπ°πšπ«π² 3 , π‰πšπ¦πšπ₯ π’πšπ₯𝐚𝐑 4 , 𝐁𝐚𝐬𝐞𝐦 π…π«πšπ¬π’π§ 5

  • 1 Mathematics Education Program, Faculty of Education and Arts, Sohar University,Sohar 3111, Oman - (AAmourah@su.edu.om)
  • 2 Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13132, Jordan - (orefai@zu.edu.jo)
  • 3 Department of Applied Science, Ajloun College, Al balqa Applied University, Ajloun 26816. Jordan; Jadara Research Center, Jadara University, Irbid 21110, Jordan - (tariq_amh@bau.edu.jo)
  • 4 College of Applied and Health Sciences, A'Sharqiyah University, Post Box No. 42, Post Code No. 400 Ibra, Sultanate of Oman - (damous73@yahoo.com)
  • 5 Faculty of Science, Department of Mathematics, Al al-Bayt University, Mafraq, Jordan - (bafrasin@yahoo.com)
  • Doi: https://doi.org/10.54216/IJNS.250312

    Received: June 14, 2024 Revised: August 10, 2024 Accepted: September 24, 2024
    Abstract

    In this investigation, we present a new collection of analytic functions that includes Touchard polynomials. We then aim to calculate the Maclaurin coefficients |π‘Ž2 | and |π‘Ž3 | and address the Fekete-Szegö functional problem within this specific subfamily. Additionally, we demonstrate several new outcomes by specifying the parameters used in our main findings.

    Keywords :

    Analytic functions , Touchard Polynomials , Fekete-Szegö , problem , Bi-univalent functions

    References

    [1] A. Legendre, Recherches sur laattraction des sph_eroides homog_enes, M_emoires pr_esentes par diverssavants a laAcad_emie des Sciences de laInstitut de France, Paris, 10 (1785), 411-434.

    [2] H. Bateman, Higher Transcendental Functions, McGraw-Hill, 1953.

    [3] B. Doman, The classical orthogonal polynomials, World Scienti_c, 2015.

    [4] J. Touchard, Sur les cycles des substitutions, Acta Math., 70(1939), 243-297.

    [5] K.N. Boyadzhiev, Exponential polynomials, Stirling numbers, and evaluation of some Gamma integrals, Abstract Appl. Anal., Vol. (2009), Art. ID 168672, 1-18.

    [6] K. Al-Shaqsi, On inclusion results of certain subclasses of analytic functions associated with generating function, AIP Conference Proceedings 1830, 070030 (2017); doi: 10.1063/1.4980979.

    [7] S. S. Miller, P. T. Mocanu, Second Order Di_erential Inequalities in the Complex Plane, J. Math. Anal. Appl.65 (1978), 289-305.

    [8] S. S. Miller, P. T. Mocanu, Di_erential Subordinations and Univalent Functions, Mich. Math. J. 28 (1981), 157-172.

    [9] S. S. Miller, P. T. Mocanu, Di_erential Subordinations. Theory and Applications, Marcel Dekker, Inc.: New York, NY, USA, (2000).

    [10] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569{1573.

    [11] G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat., 28(2017), 1357{1366.

    [12] A. Amourah, B. A. Frasin, G. Murugusundaramoorthy, T. Al-Hawary, Bi-Bazilevi_c functions of order A+ib_ associated with (p; q)τ€€€Lucas polynomials. AIMS Mathematics 6.5 (2021), 4296-4305.

    [13] S. Bulut, Coe_cient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43 (2013), no. 2, 59{65.

    [14] H. O. Guney, G. Murugusundaramoorthy and J. Sokol, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapientiae, Math., 10 (2018), no. 1, 70-84.

    [15] G. Murugusundaramoorthy, N. Magesh, V. Prameela, Coe_cient bounds for certain subclasses of bi-univalent function, Abst. Appl. Anal., Volume 2013, Article ID 573017, 3 pages.

    [16] Z. Peng,G. Murugusundaramoorthy, T. Janani, Coe_cient estimate of bi-univalent functions of complex order associated with the Hohlov operator, J. Complex Analysis, Volume 2014, Article ID 693908, 6 pages.

    [17] H. M. Srivastava, S_. Alt_nkaya, S. Yal_c_n, Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iranian Journal of Science and Technology, Transactions A: Science 43.4 (2019): 1873-1879.

    [18] F. Yousef, T. Al-Hawary, G. Murugusundaramoorthy, Fekete-Szeg•o functional problems for some subclasses of bi-univalent functions de_ned by Frasin di_erential operator. Afrika Matematika 30, no. 3-4 (2019): 495-503.

    [19] Amourah, A., Jarwan, D., Salah, J., Mohammed, M. J., Meqdad, S. A., & Anakira, N. (2024). Euler Polynomials and Bi-univalent Functions. European Journal of Pure and Applied Mathematics, 17(3), 1948-1958.

    [20] Al-Hawary, T., Amourah, A., Salah, J., & Yousef, F. (2024). Two Inclusive Subfamilies of bi-univalent Functions. International Journal of Neutrosophic Science, 24(4), 315-15.

    [21] Amourah, A., Alsoboh, A., Breaz, D., & El-Deeb, S. M. (2024). A Bi-Starlike Class in a Leaf-like Domain Defined through Subordination via q Μ§-Calculus. Mathematics, 12(11), 1735.

    [22] Alnajar, O., Ogilat, O., Amourah, A., Darus, M., & Alatawi, M. S. (2024). The Miller-Ross Poisson distribution and its applications to certain classes of bi-univalent functions related to Horadam polynomials. Heliyon, 10(7).

    [23] Amourah, A., Anakira, N., Mohammed, M. J., & Jasim, M. (2024). Jacobi polynomials and bi-univalent functions. Int. J. Math. Comput. Sci, 19(4), 957-968.

    [24] Amourah, A., Frasin, B. A., Salah, J., & Al-Hawary, T. (2024). Fibonacci Numbers Related to Some Subclasses of Bi‐Univalent Functions. International Journal of Mathematics and Mathematical Sciences, 2024(1), 8169496.

    [25] Al-Hawary, T., Amourah, A., Alsoboh, A., Ogilat, O., Harny, I., & Darus, M. (2024). Applications of q- Ultraspherical polynomials to bi-univalent functions defined by $ q-$ Saigo's fractional integral operators. AIMS Mathematics, 9(7), 17063-17075.

    [26] Al-Refai, O., Amourah, A., Al-Hawary, T., & Frasin, B. A. (2024). A New Method for Estimating General Coefficients to Classes of Bi‐univalent Functions. Journal of Function Spaces, 2024(1), 9889253.

    [27] Amourah, A., Abdelkarim, H., & AL-Elaumi, A. (2022). (p, q)− Chebyshev polynomials and their applications to bi-univalent functions.

    [28] Amourah, A., Alomari, M., Yousef, F., & Alsoboh, A. (2022). Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi‐Univalent Functions Involving Gegenbauer Polynomials. Mathematical Problems in Engineering, 2022(1), 6354994.

    [29] Amourah, A., Frasin, B. A., Ahmad, M., & Yousef, F. (2022). Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions. Symmetry, 14(1), 147.

    [30] Illafe, M., Amourah, A., & Haji Mohd, M. (2022). Coefficient estimates and Fekete–Szegö functional inequalities for a certain subclass of analytic and bi-univalent functions. Axioms, 11(4), 147.

    [31] Yousef, F., Amourah, A., Frasin, B. A., & Bulboacă, T. (2022). An avant-Garde construction for subclasses of analytic bi-univalent functions. Axioms, 11(6), 267.

    [32] Amourah, A., Frasin, B. A., & Al-Hawary, T. (2022). Coefficient estimates for a subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the Gegenbauer polynomials. Kyungpook Mathematical Journal, 62(2), 257-269.

    [33] Illafe, M., Yousef, F., Haji Mohd, M., & Supramaniam, S. (2023). Initial coefficients estimates and Fekete–Szegö inequality problem for a general subclass of bi-univalent functions defined by subordination. Axioms, 12(3), 235.

    [34] Yousef, F., Alroud, S., & Illafe, M. (2021). New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems. Analysis and Mathematical Physics, 11, 1-12.

    [35] Yousef, F., Alroud, S., & Illafe, M. (2020). A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind. Boletín de la Sociedad Matemática Mexicana, 26, 329-339.

    [36] Amourah, A. A., & Yousef, F. (2020). Some properties of a class of analytic functions involving a new generalized differential operator. Bol. Soc. Paran. Mat, 38(6), 33-42.

    [37] Hussen, A., & Illafe, M. (2023). Coefficient bounds for a certain subclass of bi-univalent functions associated with Lucas-balancing polynomials. Mathematics, 11(24), 4941.

    [38] Hussen, A. (2024). An application of the Mittag-Leffler-type Borel distribution and Gegenbauer polynomials on a certain subclass of bi-univalent functions. Heliyon, 10(10).

    [38] Hussen, A., Madi, M. S., & Abominjil, A. M. (2024). Bounding coefficients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials. AIMS Mathematics, 9(7), 18034-18047.

    [39] Hussen, A., & Zeyani, A. (2023). Coefficients and Fekete–Szegö functional estimations of bi-univalent subclasses based on Gegenbauer polynomials. Mathematics, 11(13), 2852.

    [40] Amourah, A., Alamoush, A., & Al-Kaseasbeh, M. (2021). Gegenbauer polynomials and bi-univalent functions. Palestine Journal of Mathematics, 10(2), 625-632.

    [41] ALAMOUSH, A. (2019). Coefficient estimates for a new subclasses of λ-pseudo biunivalent functions withrespect to symmetrical points associated with the Horadam Polynomials. Turkish Journal of Mathematics, 43(6), 2865-2875.

    [42] AlAmoush, A. G. (2019). Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Horadam polynomials. Malaya Journal of Matematik, 7(04), 618-624.

    [43] M. Fekete, G. Szego, Eine Bemerkung ~Aber ungerade schlichte Funktionen, J. Lond. Math. Soc., 1.2 (1933), 85-89.

    Cite This Article As :
    Amourah, Ala. , 𝐀π₯, 𝐎πͺπ₯𝐚𝐑. , 𝐀π₯, π“πšπ«π’πͺ. , π’πšπ₯𝐚𝐑, π‰πšπ¦πšπ₯. , π…π«πšπ¬π’π§, 𝐁𝐚𝐬𝐞𝐦. On A Subclass of Analytic Functions Specified By Touchard Polynomials. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 123-131. DOI: https://doi.org/10.54216/IJNS.250312
    Amourah, A. 𝐀π₯, . 𝐀π₯, . π’πšπ₯𝐚𝐑, . π…π«πšπ¬π’π§, . (2025). On A Subclass of Analytic Functions Specified By Touchard Polynomials. International Journal of Neutrosophic Science, (), 123-131. DOI: https://doi.org/10.54216/IJNS.250312
    Amourah, Ala. 𝐀π₯, 𝐎πͺπ₯𝐚𝐑. 𝐀π₯, π“πšπ«π’πͺ. π’πšπ₯𝐚𝐑, π‰πšπ¦πšπ₯. π…π«πšπ¬π’π§, 𝐁𝐚𝐬𝐞𝐦. On A Subclass of Analytic Functions Specified By Touchard Polynomials. International Journal of Neutrosophic Science , no. (2025): 123-131. DOI: https://doi.org/10.54216/IJNS.250312
    Amourah, A. , 𝐀π₯, . , 𝐀π₯, . , π’πšπ₯𝐚𝐑, . , π…π«πšπ¬π’π§, . (2025) . On A Subclass of Analytic Functions Specified By Touchard Polynomials. International Journal of Neutrosophic Science , () , 123-131 . DOI: https://doi.org/10.54216/IJNS.250312
    Amourah A. , 𝐀π₯ . , 𝐀π₯ . , π’πšπ₯𝐚𝐑 . , π…π«πšπ¬π’π§ . [2025]. On A Subclass of Analytic Functions Specified By Touchard Polynomials. International Journal of Neutrosophic Science. (): 123-131. DOI: https://doi.org/10.54216/IJNS.250312
    Amourah, A. 𝐀π₯, . 𝐀π₯, . π’πšπ₯𝐚𝐑, . π…π«πšπ¬π’π§, . "On A Subclass of Analytic Functions Specified By Touchard Polynomials," International Journal of Neutrosophic Science, vol. , no. , pp. 123-131, 2025. DOI: https://doi.org/10.54216/IJNS.250312