Volume 25 , Issue 3 , PP: 51-59, | Cite this article as | XML | Html | PDF | Full Length Article
Mansour F. Yassen 1 *
Doi: https://doi.org/10.54216/IJNS.250305
This study develops a new version of the lognormal distribution, the neutrosophic lognormal distribution (NLND), to address uncertainties commonly exist in reliability studies within the engineering field. The NLND is suitable for analyzing complex data with symmetrical or right-skewed patterns. The paper discusses the mathematical characteristics of the NLND, including concepts of reliability like mean time failure, hazard rate, cumulative failure rate, and reliability function. The model is based on real-life examples from life-test data and uses the maximum likelihood method to determine two key parameters. A simulation experiment was conducted to evaluate the accuracy of the estimated parameters, showing that maximum likelihood estimators can effectively estimate unknown parameters, especially with a large sample size. Finally, a real-world data is used to demonstrate the adequacy of the proposed model in a practical scenario.
Neutrosophic probability , Neutrosophic distribution , Lognormal model , Estimation
[1] L. J. Halliwell, “The Log-Gamma Distribution and Non-Normal Error, Variance, 2017.
[2] A. Satyanaga, H. Rahardjo, Q. Zhai, S. W. Moon, and J. Kim, Modelling Particle-Size Distribution and Estimation of Soil–Water Characteristic Curve Utilizing Modified
[3] Lognormal Distribution Function, Geotechnical and Geological Engineering*, vol. 42, no. 3, 2024, doi: 10.1007/s10706-023-02638-8.
[4] M. D. Ortigueira, A New Series Representation and the Laplace Transform for the Lognormal Distribution,” *Mathematics*, vol. 10, no. 19, 2022, doi: 10.3390/math10193474.
[5] R. Heijungs, Analysis and Remediation of the Confusing Specification of the Lognormal Distribution,” *International Journal of Life Cycle Assessment*, vol. 29, no. 3, 2024, doi: 10.1007/s11367-023-02249-8.
[6] A. M. M. Ibrahim and Z. Khan, Neutrosophic Laplace Distribution with Properties and Applications in Decision Making, International Journal of Neutrosophic Science*, vol. 23, no. 1, 2024, doi: 10.54216/IJNS.230106.
[7] A. Morales-Gregorio, A. Van Meegen, and S. J. Van Albada, Ubiquitous Lognormal Distribution of Neuron Densities in Mammalian Cerebral Cortex, Cerebral Cortex, vol. 33, no. 16, 2023, doi: 10.1093/cercor/bhad160.
[8] H. Y. A. Shihabeldeen and Z. Khan, Neutrosophic Structure of the Log-logistic Model with Applications to Medical Data, International Journal of Neutrosophic Science, vol. 23, no. 1, 2024, doi: 10.54216/IJNS.230107.
[9] S. Wang and W. Gui, Corrected Maximum Likelihood Estimations of the Lognormal Distribution Parameters,” Symmetry, vol. 12, p. 968, 2020, doi: 10.3390/SYM12060968.[10] S. Das, B. Shil, R. Das, H. E. Khalid, and A. A. Salama, “Penta partitioned Neutrosophic Probability Distributions, Neutrosophic Sets and Systems, vol. 49, 2022.
[11] F. Smarandache, Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis and Synthetic Analysis, Santa Fe, NM: American Research Press, 1998, pp. 25–38.
[12] F. Smarandache, X. Zhang, and M. Ali, Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets,” Symmetry, vol. 11, no. 2, p. 171, 2019.
[13] F. Smarandache, Introduction to Neutrosophic Statistics*, Craiova: Sitech & Education Publishing, 2014.
[14] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic Set, Neutrosophic Probability*, Infinite Study, 2005.
[15] Z. Khan, A. Al-Bossly, M. M. A. Almazah, and F. S. Alduais, On Statistical Development of Neutrosophic Gamma Distribution with Applications to Complex Data Analysis, Complexity, vol. 2021, pp. 1-8, 2021
[16] F., Mansour. Neutrosophic Structure of Sized Biased Exponential Distribution: Properties and Applications. International Journal of Neutrosophic Science, vol. 24, no. 3, 2024, pp. 268-279. DOI: https://doi.org/10.54216/IJNS.240323
[17] S. Broumi, R. Sundareswaran, M. Shanmugapriya, A. Bakali, and M. Talea, Theory and Applications of Fermatean Neutrosophic Graphs, Neutrosophic Sets and Systems, vol. 50, pp. 248-286, 2022.
[18] S. Broumi, M. Talea, A. Bakali, and F. Smarandache, “Single Valued Neutrosophic Graphs,” *Journal of New Theory*, no. 10, pp. 86-101, 2016.
[19] M. Z. Khan, M. F. Khan, M. Aslam, and A. R. Mughal, “A Study on Average Run Length of Fuzzy EWMA Control Chart,” *Soft Computing*, vol. 26, no. 18, pp. 9117-9124, 2022.
[20] M. Aslam, A Variable Acceptance Sampling Plan Under Neutrosophic Statistical Interval Method,” Symmetry, vol. 11, no. 1, p. 114, 2019.
[21] P. Schweizer, Uncertainty: Two Probabilities for the Three States of Neutrosophy, International Journal of Neutrosophic Science, vol. 2, no. 1, pp. 18-26, 2020.
[22] S. Broumi and F. Smarandache, Several Similarity Measures of Neutrosophic Sets, Infinite Study, vol. 410, no. 1, 2013.
[23] R. A. K. Sherwani, M. Aslam, M. A. Raza, M. Farooq, M. Abid, and M. Tahir, Neutrosophic Normal Probability Distribution—A Spine of Parametric Neutrosophic Statistical Tests: Properties and Applications,” in Neutrosophic Operational Research: Methods and Applications*, pp. 153-169, 2021.
[24] M. Jdid, An Efficient Neutrosophic Method for Generating Random Variates from Erlang Distribution, Neutrosophic Optimization and Intelligent Systems, vol. 2, pp. 56-68, 2024.
[25] F. S. Al-Duais, Neutrosophic Log-Gamma Distribution and its Applications to Industrial Growth, Neutrosophic Sets and Systems*, vol. 72, pp. 431-445, 2024.
[26] World Bank, World Development Indicators, Data World Bank. [Online]. Available: https://data.worldbank.org/. Accessed: July. 7, 2024.