International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 3 , PP: 25-36, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

On The Numerical Solutions of the Neutrosophic One-Dimensional Sine-Gordon System

Raed Hatamleh 1 *

  • 1 Department of Mathematics, Faculty of Science and Information Technology, Jadara University, P.O. Box 733, Irbid 21110, Jordan - (raed@jadara.edu.jo)
  • Doi: https://doi.org/10.54216/IJNS.250303

    Received: February 7, 2024 Revised: May 5, 2024 Accepted: September 10, 2024
    Abstract

    This paper uses finite difference methods to study the numerical solution for neutrosophic Sine-Gordon system in one dimension. We use the explicit method and Crank-Nicholson method. Also, an effective comparison between the results of the two methods has been made, where we obtain the result that Crank-Nicholson method is more accurate than the explicit method, but the explicit method is easier. We also study the stability analysis for each method by using Fourier (Von-Neumann) method and get that Crank-Nicholson method is unconditionally stable while the Explicit method is stable under the condition 𝑟2≤1𝑐2 and 𝑟2≤1.

    Keywords :

    Neutrosophic Sine-Gordon system , Crank-Nicholson method , Fourier (Von-Neumann) method , Nonlinear differential equations

    References

    [1] Pelloni and D. A. Pinotsis. (2010).The elliptic sine-Gordon equation in a half plane, Nonlinearity, 23, 77–88.

    [2] M. Jaworski and D. Kaup, Direct and inverse scattering problem associated with the elliptic sinh-Gordon equation, Inverse Problems 6 (1990) 543–556.

    [3] ARODZ, H. and KLIMAS, P., (2005),"Chain of impacting pendulums as non-analytically perturbed

         Sine-Gordon system", Acta Phys polonica B, No.3, Vol.36.

    [4] Gordon D. Smith (1965);"Numerical Solution of Partial Differential Equations: Finite Difference Methods", second edition, Oxford University press.

    [5] Griffiths, S.D., R.H.J. Grimshaw, K.R. Khusnutdinova, D.E. Pelinovsky. (2003).Energy exchange in coupled Sine-Gordon equations and the influence of modulational instability, Geophysical Research Abstracts, Vol.5, 00471.

    [6] Griffiths,S.D., R.H.J. Grimshaw, K.R. Khusnutdinova.(2003).The influence of modulational instability on energy exchange in coupled Sine-Gordon equations,Theor. Math. Phys. 137, 1446-1456.

    [7] A. S. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF regional conference series in applied mathematics, SIAM 2008

    [8] Mathewes, J.H. and Fink K.D. (2004); “Numerical Method using Matlab", Prentice-Hall, Inc.

    [9] A. S. Fokas. (2000). on the integrability of certain linear and nonlinear partial differential equations, J. Math.Phys. 41,4188–4237.

    [10] Scott, A. C. (2003). Nonlinear Science: "Emergence and dynamics of coherent structures",Second Edition, Oxford and New York :Oxford University Press.

    [11] Shanthakumar , M. (1989); "Computer Based Numerical Analysis", Khanna Publishers.

    [12] Heilat, A.S., Batiha,B ,T.Qawasmeh ,Hatamleh R.(2023). Hybrid Cubic B-spline Method for Solving A  

           Class of Singular Boundary Value Problems. European Journal of Pure and Applied Mathematics, 16(2),

            751-762. (DOI: https://doi.org/10.29020/nybg.ejpam.v16i2.4725).

    [13] Ayman Hazaymeh, Ahmad Qazza, Raed Hatamleh, Mohammad W Alomari, Rania Saadeh.(2023).On

           Further Refinements of Numerical Radius Inequalities, Axiom-MDPI, 12(9), 807.

    [14] T.Qawasmeh, A. Qazza, R. Hatamleh, M.W. Alomari, R. Saadeh. (2023). Further accurate numerical radius inequalities, Axiom-MDPI, 12 (8), 801.

     [15] Ayman Hazaymeh, Rania Saadeh, Raed Hatamleh, Mohammad W. Alomari, Ahmad Qazza. (2023). A

           Perturbed Milne’s Quadrature Rule for n-Times Differentiable Functions with Lp-Error Estimates, Axioms- MDPI, 12(9), and 803.

     [16] T.Qawasmeh,R.Hatamleh,(2023).A new contraction based on H-simulation functions in the frame of  Extended b-metric spaces and application, International Journal of Electrical and Computer Engineering,13 (4),4212-4221.

    [17] R.Hatamleh. (2024). On the Compactness and Continuity of Uryson's Operator in Orlicz Space, International Journal of Neutrosophic Science, 24 (3), 233-239.

    [18] Hatamleh, R. (2003). On the Form of Correlation Function for a Class of Nonstationary Field with a Zero Spectrum, Rocky Mountain Journal of Mathematics, 33(1)159-173.   (DOI:https://doi.org/10.1216/rmjm/1181069991).

     [19] Heilat, A.S., Batiha,B ,T.Qawasmeh ,Hatamleh R.(2023). Hybrid Cubic B-spline Method for Solving a Class of Singular Boundary Value Problems, European Journal of Pure and Applied Mathematics, 16(2) 751-762. (DOI: https://doi.org/10.29020/nybg.ejpam.v16i2.4725).

    [20] Abdallah Shihadeh, Khaled Ahmad Mohammad Matarneh, Raed Hatamleh, Randa Bashir Yousef Hijazeen, Mowafaq Omar Al-Qadri, Abdallah Al-Husban.(2024). An Example of Two-Fold Fuzzy Algebras Based On Neutrosophic Real Numbers, Neutrosophic Sets and Systems,vol.67, pp. 169-178 .  (DOI: 10.5281/zenodo.11151930)

     [21] Batiha, B., Ghanim, F., Alayed, O., Hatamleh, R., Heilat, A. S., Zureigat, H., & Bazighifan, O. (2022).

           Solving Multispecies Lotka–Volterra Equations by the Daftardar-Gejji and Jafari Method. International

          Journal of Mathematics and Mathematical Sciences, 2022, 1–7. (DOI:https://doi.org/10.1155/2022/1839796).

    [22] F. Y. Kamsu, C. K. Issa, and T. Z. Ngo, "Numerical solutions for singular boundary value problems using Chebyshev collocation method," Mathematics and Computers in Simulation, vol. 181, pp. 49–60, 2021, doi: 10.1016/j.matcom.2021.02.012.

    [23] Hamadneh, T., Abbes, A., Falahah, I. A., Al-Khassawneh, Y. A., Heilat, A. S., Al-Husban, A., & Ouannas, A. (2023). Complexity and chaos analysis for two-dimensional discrete-time predator–prey Leslie–Gowermodel with fractional orders. Axioms, 12(6), 561.

     [24] Heilat, A. S., Karoun, R. C., Al-Husban, A., Abbes, A., Al Horani, M., Grassi, G., & Ouannas, A. (2023). The new fractional discrete neural network model under electromagnetic radiation: Chaos, control and synchronization. Alexandria Engineering Journal, 76, 391-409.

     [25] Abu Falahah, I., Hioual, A., Al-Qadri, M. O., Al-Khassawneh, Y. A., Al-Husban, A., Hamadneh, T., &

          Ouannas, A. (2023). Synchronization of Fractional Partial Difference Equations via Linear Methods. Axioms, 12(8), 728.

     [26] Alsayyed, O., Hioual, A., Gharib, G. M., Abualhomos, M., Al-Tarawneh, H., Alsauodi, M. S., & Ouannas, A. (2023). On Stability of a Fractional Discrete Reaction–Diffusion Epidemic Model. Fractal and Fractional, 7(10), 729.

     [27] Hamadneh, T., Hioual, A., Alsayyed, O., AL-Khassawneh, Y. A., Al-Husban, A., & Ouannas, A. (2023). Local stability, global stability, and simulations in a fractional discrete glycolysis reaction–diffusion model. Fractal and Fractional, 7(8), 587.

    [28] MB Zeina, M Abobala, On The Refined Neutrosophic Real Analysis Based on Refined Neutrosophic Algebraic AH-Isometry, Neutrosophic Sets and Systems, 2023.

    [29] Bal, M. D., K. Ali, R. (2022). A Review Study on Neutrosophic AH-Algebraic Structures. Journal of Neutrosophic and Fuzzy Systems, (), 40-60. DOI: https://doi.org/10.54216/JNFS.020105

    [30] Salama, A. Dalla, R. Al, M. Ali, R. (2022). On Some Results About The Second Order Neutrosophic Differential Equations By Using Neutrosophic Thick Function. Journal of Neutrosophic and Fuzzy Systems, (), 30-40. DOI: https://doi.org/10.54216/JNFS.040104

    Cite This Article As :
    Hatamleh, Raed. On The Numerical Solutions of the Neutrosophic One-Dimensional Sine-Gordon System. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 25-36. DOI: https://doi.org/10.54216/IJNS.250303
    Hatamleh, R. (2025). On The Numerical Solutions of the Neutrosophic One-Dimensional Sine-Gordon System. International Journal of Neutrosophic Science, (), 25-36. DOI: https://doi.org/10.54216/IJNS.250303
    Hatamleh, Raed. On The Numerical Solutions of the Neutrosophic One-Dimensional Sine-Gordon System. International Journal of Neutrosophic Science , no. (2025): 25-36. DOI: https://doi.org/10.54216/IJNS.250303
    Hatamleh, R. (2025) . On The Numerical Solutions of the Neutrosophic One-Dimensional Sine-Gordon System. International Journal of Neutrosophic Science , () , 25-36 . DOI: https://doi.org/10.54216/IJNS.250303
    Hatamleh R. [2025]. On The Numerical Solutions of the Neutrosophic One-Dimensional Sine-Gordon System. International Journal of Neutrosophic Science. (): 25-36. DOI: https://doi.org/10.54216/IJNS.250303
    Hatamleh, R. "On The Numerical Solutions of the Neutrosophic One-Dimensional Sine-Gordon System," International Journal of Neutrosophic Science, vol. , no. , pp. 25-36, 2025. DOI: https://doi.org/10.54216/IJNS.250303