International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 2 , PP: 141-154, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

A Fuzzy Adaptive Control Chart as an Alternative to Neutrosophic Techniques for Handling Imprecise Data

Mohammed A. Alshahrani 1 * , Imad Khan 2 , Wojciech Sumelka 3

  • 1 Department of Mathematics, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia - (m.alshahrani@psau.edu.sa)
  • 2 Department of Statistics, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan - (imad.icp@gmail.com)
  • 3 Institute of Structural Analysis, Poznan University of Technology, Poznan, Poland - (wojciech.sumelka@put.poznan.pl)
  • Doi: https://doi.org/10.54216/IJNS.250212

    Received: July 28, 2024 Revised: August 29, 2024 Accepted: September 22, 2024
    Abstract

    Quality control (QC) charts are essential for ensuring industry process stability, but imprecise data make traditional methods unuseful in such a case. Neutrosophic control charts are available to handle the imprecise data. This article learns fuzzy logic as an approach of handling uncertainty more suitably than neutrosophic approaches. Fuzzy QC charts make use of fuzzy numbers, membership functions and fuzzy control limits and as such are more realistic compared to conventional charts. The study introduces a Fuzzy Adaptive Exponentially Weighted Moving Average (FAEWMA) chart, specifically designed for univariate data in a fuzzy atmosphere. The FAEWMA chart, incorporating α-cuts, is engineered to detect shifts in process means, showcasing its effectiveness through both theoretical development and practical applications. This approach improves decision-making in process control and represents a significant advancement over traditional QC methods.

    Keywords :

    Adaptive control chart , Neutrosophic chart , Fuzzy control chart , Fuzzy EWMA

    References

    [1]          Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–356 (1965).

    [2]          Roberts SW. Control chart tests based on geometric moving averages. Technometrics. 1959;1(3):239-250.

    [3]           Page ES. Continuous inspection schemes. Biometrika. 1954;41(1/2):100-115.

    [4]          Aslam, M., Al-Marshadi, A. H., & Khan, N. (2019). A new X-bar control chart for using neutrosophic exponentially weighted moving average. Mathematics7(10), 957.

    [5]          Shafqat, A., Aslam, M., Saleem, M., & Abbas, Z. (2021). The New Neutrosophic Double and Triple Exponentially Weighted Moving Average Control Charts. CMES-Computer Modeling in Engineering & Sciences129(1).

    [6]          Aslam, M., Bantan, R. A., & Khan, N. (2019). Design of SN 2− NEWMA Control Chart for Monitoring Process having Indeterminate Production Data. Processes7(10), 742.

    [7]          Khan, N., Ahmad, L., Rao, G. S., Aslam, M., & Al-Marshadi, A. H. (2021). A new X-bar control chart for multiple dependent state sampling using neutrosophic exponentially weighted moving average statistics with application to monitoring road accidents and road injuries. International Journal of Computational Intelligence Systems14, 1-11.

    [8]          Shah, F., Aslam, M., & Khan, Z. (2023). New Control Chart Based On Neutrosophic Maxwell Distribution with Decision Making Applications. Neutrosophic Sets and Systems53(1), 18.

    [9]          A., Louai. (2025). Complex Proportional Assessment Based Neutrosophic Approach for Ransomware Detection in Cybersecurity IoT System. International Journal of Neutrosophic Science, vol. 25, no. 2, pp. 22-32. 

    [10]       Alipour, H., & Noorossana, R. (2010). Fuzzy multivariate exponentially weighted moving average control chart. The International Journal of Advanced Manufacturing Technology, 48, 1001-1007.

    [11]       Faraz, A., & Shapiro, A. F. (2010). An application of fuzzy random variables to control charts. Fuzzy sets and systems, 161(20), 2684-2694.

    [12]       Hesamian, G., Akbari, M. G., & Yaghoobpoor, R. (2018). Quality control process based on fuzzy random variables. IEEE Transactions on Fuzzy Systems, 27(4), 671-685.

    [13]       Şentürk, S., Erginel, N., Kaya, İ., & Kahraman, C. (2014). Fuzzy exponentially weighted moving average control chart for univariate data with a real case application. Applied Soft Computing, 22, 1-10.

    [14]       Khan, M. Z., Khan, M. F., Aslam, M., Niaki, S. T. A., & Mughal, A. R. (2018). A fuzzy EWMA attribute control chart to monitor process mean. Information, 9(12), 312.

    [15]       Khademi, M., & Amirzadeh, V. (2014). Fuzzy rules for fuzzy $\overline {X} $ and $ R $ control charts. Iranian Journal of Fuzzy Systems, 11(5), 55-66.

    [16]       Taylan, O., & Darrab, I. A. (2012). Fuzzy control charts for process quality improvement and product assessment in tip shear carpet industry. Journal of Manufacturing Technology Management, 23(3), 402-420.

    [17]       Al-Refaie, A., Abbasi, G., & Ghanim, D. (2021). Proposed α-cut CUSUM and EWMA control charts for fuzzy response observations. International Journal of Reliability, Quality and Safety Engineering, 28(02), 2150012.

    [18]       Shu, M.-H., Nguyen, T.-L., & Hsu, B.-M. (2014). Fuzzy MaxGWMA chart for identifying abnormal variations of on-line manufacturing processes with imprecise information. Expert systems with applications, 41(4), 1342-1356.

    [19]       Kaplan Göztok, K., Uçurum, M., & Özdemir, A. (2021). Development of a fuzzy exponentially weighted moving average control chart with an α-level cut for monitoring a production process. Arabian Journal for Science and Engineering, 46, 1911-1924.

    [20]       Kaya, I., & Kahraman, C. (2011). Process capability analyses with fuzzy parameters. Expert systems with applications, 38(9), 11918-11927.

    [21]       Mojtaba Zabihinpour, S., Ariffin, M., Tang, S., & Azfanizam, A. (2015). Construction of fuzzy xs control charts with an unbiased estimation of standard deviation for a triangular fuzzy random variable. Journal of Intelligent & Fuzzy Systems, 28(6), 2735-2747.

    [22]       Hesamian, G., Akbari, M. G., & Ranjbar, E. (2019). Exponentially weighted moving average control chart based on normal fuzzy random variables. International Journal of Fuzzy Systems, 21, 1187-1195.

    [23]       Jiang, W., Shu, L., & Apley, D. W. (2008). Adaptive CUSUM procedures with EWMA-based shift estimators. Iie Transactions40(10), 992-1003.

    [24] Haq, A. (2018). A new adaptive EWMA control chart for monitoring the process dispersion. Quality and Reliability Engineering International, 34(5), 846-857.

    [25]       Sarwar, M. A., & Noor‐ul‐Amin, M. (2022). Design of a new adaptive EWMA control chart. Quality and Reliability Engineering International, 1-15. doi:10.1002/qre.3141.

    Cite This Article As :
    A., Mohammed. , Khan, Imad. , Sumelka, Wojciech. A Fuzzy Adaptive Control Chart as an Alternative to Neutrosophic Techniques for Handling Imprecise Data. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 141-154. DOI: https://doi.org/10.54216/IJNS.250212
    A., M. Khan, I. Sumelka, W. (2025). A Fuzzy Adaptive Control Chart as an Alternative to Neutrosophic Techniques for Handling Imprecise Data. International Journal of Neutrosophic Science, (), 141-154. DOI: https://doi.org/10.54216/IJNS.250212
    A., Mohammed. Khan, Imad. Sumelka, Wojciech. A Fuzzy Adaptive Control Chart as an Alternative to Neutrosophic Techniques for Handling Imprecise Data. International Journal of Neutrosophic Science , no. (2025): 141-154. DOI: https://doi.org/10.54216/IJNS.250212
    A., M. , Khan, I. , Sumelka, W. (2025) . A Fuzzy Adaptive Control Chart as an Alternative to Neutrosophic Techniques for Handling Imprecise Data. International Journal of Neutrosophic Science , () , 141-154 . DOI: https://doi.org/10.54216/IJNS.250212
    A. M. , Khan I. , Sumelka W. [2025]. A Fuzzy Adaptive Control Chart as an Alternative to Neutrosophic Techniques for Handling Imprecise Data. International Journal of Neutrosophic Science. (): 141-154. DOI: https://doi.org/10.54216/IJNS.250212
    A., M. Khan, I. Sumelka, W. "A Fuzzy Adaptive Control Chart as an Alternative to Neutrosophic Techniques for Handling Imprecise Data," International Journal of Neutrosophic Science, vol. , no. , pp. 141-154, 2025. DOI: https://doi.org/10.54216/IJNS.250212