International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 2 , PP: 64-83, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Pentapartitioned Neutrosophic Vague Soft Sets and its Applications

Manal Al-Labadi 1 , Shuker Khalil 2 * , Radhika V. R. 3 , Mohana K. 4

  • 1 Department of Mathematics, Faculty of Arts and Sciences, University of Petra, Amman, Jordan - (manal.allabadi@uop.edu.jo)
  • 2 Department of Mathematics, College of Science, University of Basrah, Basrah 61004, Iraq - (shuker.khalil@uobasrah.edu.iq)
  • 3 Department of Mathematics, Nirmala College for Women, Coimbatore, India - (radhikaramakrishnan2805@gmail.com)
  • 4 Department of Mathematics, Nirmala College for Women, Coimbatore, India - (riyaraju1116@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.250207

    Received: February 05, 2024 Revised: April 29, 2024 Accepted: July 25, 2024
    Abstract

    The objective of this paper is to extend the concept of standard soft sets to pentapartitioned neutrosophic vague soft sets (PNVSSs) by applying soft set theory to pentapartitioned neutrosophic vague sets (PNVSs)to make them stronger and more usable. We additionally describe its null, absolute, and fundamental operations, such as complement, subset, equality, union, and intersection, using examples. In addition, we defined the Pentaprtitioned Neutrosophic Vague multiset and the Possibility Pentaprtitioned Neutrosophic Vague sets (PPNVSs). We also look at several related properties and the proofs for them. Finally, this concept is applied to a decision-making problem, and its viability is demonstrated using an example. Related properties and the proofs for them. Finally, this concept is applied to a decision-making problem, and its viability is demonstrated using an example.

    Keywords :

    Neutrosophic sets , Pentapartitioned neutrosophic sets , Soft sets , Multiset , Neutrosophic soft sets , Vague sets

    References

    [1] L. Zadeh, Fuzzy set. Information and Control, 8(3), 338–353, (1965).

    [2]   A. Ahmadian, N. Senu, S. Salahshour, and M. Suleiman, , Nearest interval-valued approximation of interval-valued fuzzy numbers. Malaysian Journal of Mathematical Sciences, 10(S), 325–336, (2016).

    [3]   A. Paul,  and B. Bhattacharya, New types of functions and separation axiom by γ-open sets in fuzzy bitopological spaces. Malaysian Journal of Mathematical Sciences, 9(3), 397–407, (2015).

    [4] L. Jaber,  and S. Mahmood, "New Category of Equivalence Classes of Intuitionistic Fuzzy Delta-Algebras with Their Applications," Smart Innovation, Systems and Technologies 302, 651-663 (2022). doi: 10.1007/978-981-19-2541-2_54.

    [5] S. Khalil, and F. Hameed, "Applications of Fuzzy ρ -Ideals in ρ -Algbras," Soft Computing 24, 13997-14004 (2020). doi: 10.1007/s00500-020-04773-3.

    [6] A. E. Kadhm, S. Khalil, N. A. Hussein, Some results on intuitionistic E-algebra fuzzy metric like spaces, Proc. SPIE, vol. 13188, (MIEITS 2024), 1318805,(2024). https://doi.org/10.1117/12.3030816

    [7]  S. M. Noori, A. G. Ahmad, S. Khalil, The decision-making process in learners’ failure using fuzzy scale, Journal of Interdisciplinary Mathematics, 26 (7), 1533–1540, (2023).

    [8] M. Al-Labad, S. Khalil, A. N. Hassan, The Chemical Elements with Their Applications in Fuzzy Delta-Algebraic Systems. In: Vlachos, D. (eds) Mathematical Modeling in Physical Sciences. ICMSQUARE 2023. Springer Proceedings in Mathematics & Statistics, 446, 689-703, (2024). Cham. https://doi.org/10.1007/978-3-031-52965-8_51,

    [9] S. M. Khalil, "Decision Making Using New Category of Similarity Measures and Study Their Applications in Medical Diagnosis Problems," Afrika Matematika, 32, 865–878, (2021). doi: 10.1007/s13370-020-00866-2.

    [10] A. A. Atshan, S.M. Khalil, On fuzzy normal RHO-filters and usual RHO-filters of RHO-algebras, AIP Conf. Proc. 2834, 080036, (2023). https://doi.org/10.1063/5.0161936

    [11] A. A. Atshan, S. Khalil, “On Complete Intuitionistic Fuzzy Roh-Ideals in Roh-Algebras”, Iraqi Journal of Science, 64(7), 3458–3467, (2023), doi: 10.24996/ijs.2023.64.7.27.

    [12] S. Khalil, and  M. Sharqi,  " Some applications in decision-making using cosine maps and the relevance of the Pythagorean fuzzy," Engineering Applications of Artificial Intelligence 122, 106089 (2023).

    [13] S. A. Abdul-Ghani,, S. Mahmood, M. Abd Ulrazaq, and A. F. Al-Musawi, "New Branch of Intuitionistic Fuzzification in Algebras with Their Applications," International Journal of Mathematics and Mathematical Sciences, 2018, 6, (2018). doi: 10.1155/2018/5712676.

    [14] S. Khalil,  A. Hassan, H. Alaskar, W. Khan, and A. Hussain, "Fuzzy Logical Algebra and Study of the Effectiveness of Medications for COVID-19," Mathematics, 9(22), 28-38, (2021).

    [15] S. Mahmood, "New category of the fuzzy d- algebras," Journal of Taibah University for Science 12(2), 143-149, (2018). https://doi.org/10.1080/16583655.2018.1451059.

    [16] S. Mahmood and M. H. Hasab, "Decision Making Using New Distances of Intuitionistic Fuzzy Sets and Study Their Application in The Universities, INFUS," Advances in Intelligent Systems and Computing, 1197, 390-396, (2020). https://doi.org/10.1007/978-3-030-51156-2_46.

    [17] S. Noori, A. G. Ahmad, and S. M. Khalil,  "New Class of Doubt Bipolar Fuzzy Sub Measure Algebra," Computer Modeling in Engineering & Sciences, 135(1), 293-300 (2023). doi: 10.32604/cmes.2022.021887.

    [18] S. M. Khalil, A. N. Hassan, "New Class of Algebraic Fuzzy Systems Using Cubic Soft Sets with their Applications," IOP Conf. Series: Materials Science and Engineering, 928, 042019, (2020). doi 10.1088/1757-899X/928/4/042019.

    [19] M. S. Sharqi and S. Mahmood, "  New Structures of Soft Permutation in Commutative Q-Algebras," Iraqi Journal for Computer Science and Mathematics, 5(3), 263-274, (2024). doi.org/10.52866/ijcsm.2024.05.03.014.

    [20] M. A. Hasan, S. Khalil, and N. M. Ali Abbas, "Characteristics of the Soft-(1 2) - gprw-Closed Sets in Soft Bi-Topological Spaces," Conference IT-ELA 2020, 9253110, 103-108, (2020). doi: 10.1109/IT-ELA50150.2020.9253110.

    [21] M. A. Hasan, N. Ali Abbas, and S. Khalil, "On Soft α*-Open Sets and Soft Contra α*-Continuous Mappings in Soft Topological Spaces," J. Interdiscip. Math., 24, 729–734, (2021). doi: 10.1080/09720502.2020.1861786

    [22] S. M. Khalil,  and F. Hameed, "Applications on Cyclic Soft Symmetric Groups," IOP Conf. Series: Journal of Physics 1530, 012046 (2020). doi: 10.1088/1742-6596/1530/1/012046.

    [23] A. F. Al-Musawi, S. Mahmood, M. Abd Ulrazaq, "Soft (1,2)-Strongly Open Maps in Bi-Topological Spaces," IOP Conference Series: Materials Science and Engineering, 571, 012002, (2019). doi:10.1088/1757-899X/571/1/012002

    [24] N. M. A. Abbas, S. Mahmood, and A. A. Hamza,, "On α*-Continuous and Contra α*-Continuous Mappings in Topological Spaces with Soft Setting," Int. J. Nonlinear Anal. Appl., 12, 1107–1113, (2021). doi:10.22075/ijnaa.2021.23061.2471.

    [25] S. Khalil, and F. Hameed, "An algorithm for the generating permutation algebras using soft spaces," Journal of Taibah University for Science, 12(3), 299-308, (2018). https://doi.org/10.1080/16583655.2018.1468671

    [26] S. M. Noori, S. Khalil, A. G. Ahmad, Multiple Fuzzy Soft Graphs Based on Maps and Consider Their Applications in Decision-Making. In: Vlachos, D. (eds) Mathematical Modeling in Physical Sciences. ICMSQUARE 2023. Springer Proceedings in Mathematics & Statistics, 446, 273-298, (2024). https://doi.org/10.1007/978-3-031-52965-8_23,

    [27] S. Mahmood, M. Ulrazaq,  S. Abdul-Ghani, and A. F. Al-Musawi,  "σ-Algebra and σ-Baire in Fuzzy Soft Setting," Advances in Fuzzy Systems 2018, 10, (2018). http://dx.doi.org/10.1155/2018/5731682.

    [28] S. Khalil,  and A. Hassan, "Applications of Fuzzy Soft ρ -Ideals in ρ-Algebras," Fuzzy Information and Engineering, 10(4), 467-475, (2018). doi: 10.1080/16168658.2020.1799703.

    [29] S. Mahmood, "Dissimilarity Fuzzy Soft Points and their Applications," journal of Fuzzy Information and Engineering, 8, 281-294, (2016).

    [30] S. Khalil,  and A. Hassan, A. N., "New Class of Algebraic Fuzzy Systems Using Cubic Soft Sets with their Applications," IOP Conf. Series: Materials Science and Engineering, 928, 042019, (2020). doi: 10.1088/1757-899X/928/4/042019.

    [31] S. Mahmood,  "Decision making using algebraic operations on soft effect matrix as new category of similarity measures and study their application in medical diagnosis problems," Journal of Intelligent & Fuzzy Systems, 37, 1865-1877, (2019). doi: 10.3233/JIFS-179249.

    [32] S. M. Khalil, S. A. Abdul-Ghani,"Soft M-Ideals and Soft S-Ideals in Soft S-Algebras," IOP Conf. Series: Journal of Physics, 1234, 012100, (2019). doi: 10.1088/1742-6596/1234/1/012100

    [33] E. Suleiman, A. F. Al-Musawi, S. Khalil, New Classes of the Quotient Permutation BN-Algebras in Permutation BN-Algebras, Trends in Mathematics, (ICRDM 2022, 13-23, (2024). https://doi.org/10.1007/978-3-031-37538-5_2,

    [34] N. M. Ali Abbas, S. Khalil, E. Suleiman, On Permutation Distributive BI-Algebras, Trends in Mathematics, ICRDM 2022, 143-153, (2024). https://doi.org/10.1007/978-3-031-37538-5_14

    [35] S. M. Khalil, E. Suleiman, and M. M. Torki, "Generated New Classes of Permutation l/B-Algebras," Journal of Discrete Mathematical Sciences and Cryptography, 25(1), 31-40 (2022). doi: 10.1080/09720529.2021.1968110.

    [36] S. M. Khalil, E. Suleiman, and N. M. Ali Abbas,, "New Technical to Generate Permutation Measurable Spaces," 2021 1st Babylon International Conference on Information Technology and Science (BICITS), 160-163 (2021). doi: 10.1109/BICITS51482.2021.9509892.

    [37] S. Alsalem, A. F. Al Musawi,  and E. Suleiman, "On Permutation Upper and Transitive Permutation BE-Algebras," 2022 14th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), Karachi, Pakistan, 1-6, (2022). doi: 10.1109/MACS56771.2022.10022454.

    [38] N. M. Ali Abbas, S. Alsalem, and E. Suleiman, "On Associative Permutation BM-Algebras," 2022 14th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), Karachi, Pakistan, 1-5, (2022). doi: 10.1109/MACS56771.2022.10022691.

    [39] S. Alsalem, A. F. Al Musawi,  and E. Suleiman, "On permutation G-part in permutation Q-algebras," Proc. SPIE 12616, International Conference on Mathematical and Statistical Physics, Computational Science, Education, and Communication (ICMSCE 2022), 1261604, (2023).  doi:10.1117/12.2674993.

    [40] S. Alsalem, A. F. Al Musawi,  and E. Suleiman, "On Permutation B-center and Derived Permutation B-algebras," IEEE Xplore, 46-50, (2022). doi: 10.1109/MCSI55933.2022.00014.

    [41] S. Alsalem, A. F. Al Musawi,  and E. Suleiman, "On maximal permutation BH-ideals of Permutation BH-Algebras," IEEE Xplore, 40-45, (2022). doi: 10.1109/MCSI55933.2022.00013.

    [42] M. S. Sharqi and S. Mahmood, "On Permutation Commutative Q-Algebras with Their Ideals," IEEE Xplore, 108-112, (2023). doi: 10.1109/ACA57612.2023.10346689.

    [43] H. T. Fakher, S. M. Khalil, On cubic dihedral permutation d/BCK-algebras, AIP Conf. Proc. 2834, 080031 (2023). https://doi.org/10.1063/5.0161935

    [44] M. Al-Labadi, S Khalil, E Suleiman, New structure of d-algebras using permutations, Proceedings of the SPIE, 12936, id. 129360M 9, (2023). doi: 10.1117/12.3011428. 

    [45] M. Al-Labadi, S. Khalil, E Suleiman, N Yerima, On {1}-commutative permutation BP-algebras, Proceedings of the SPIE, 12936, id. 129361N 8, (2023). doi: 10.1117/12.3011417.

    [46] A. F. Al-Musawi, S. Khalil, E. Suleiman, On Permutation Quotient Object in Permutation 𝐺-Sets, Smart Innovation, Systems and Technologies, 351, 435-444, (2023). Springer, Singapore. https://doi.org/10.1007/978-981-99-2468-4_33

    [47] M. S. Sharqi and S. M. Khalil, On Permutation Rho-Transitive in Permutation Rho-Algebras, Iraqi Journal of Science, 65(7), (2024). doi:10.24996/ijs.2024.65.7.32.

    [48] S. Mahmood. and F. Hameed, "An algorithm for generating permutations in symmetric groups using spaces with general study and basic properties of permutations spaces", J Theor Appl Inform Technol., 96(9),  2445-2457, (2018).

    [49] S. M. Khalil, and N. M. Abbas, "Applications on New Category of the Symmetric Groups," AIP Conference Proceedings 2290, 040004, (2020). doi: 10.1063/5.0027380 .

    [50] M. M. Torki, and S. M. Khalil,, "New Types of Finite Groups and Generated Algorithm to Determine the IntegerFactorization by Excel," AIP Conference Proceedings 2290, 040020, (2020). doi: 10.1063/5.0027691.

    [51] S. M. Khalil, and A. Rajah, "Solving the Class Equation  in an Alternating Group for each  and, Arab J. Basic Appl. Sci. 10, 42–50, (2011). doi.org/10.1016/j.jaubas.2011.06.006.

    [52] H. T. Fakher, and S. Mahmood,  "The Cubic Dihedral Permutation Groups of Order 4k," ECS Transactions 107(1), 3179 (2022). doi: 10.1149/10701.3179ecst.

    [53] S. M. Khalil, and A. Rajah, "Solving Class Equation  in an Alternating Group for all  & Arab J. Basic Appl. Sci. 16, 38–45 (2014). doi.org/10.1016/j.jaubas.2013.10.003.

    [54] S. Mahmoood, and N. M. Ali Abbas, "Characteristics of the Number of Conjugacy Classes and P-Regular Classes in Finite Symmetric Groups," IOP Conference Series: Materials Science and Engineering 571, 012007 (2019). doi:10.1088/1757-899X/571/1/012007.

    [55] S. Khalil, and N. M. A. Abbas, "On Nano with Their Applications in Medical Field," AIP Conference Proceedings 2290, 040002, (2020). doi:10.1063/5.0027374.

    [56] N. Abbas, A. Al Musawi, and S. Alsalem, "A study of neutrosophic regular generalized b-closed sets in neutrosophic topological spaces," Proc.SPIE 12616, 1261605, (2023).

    [57] A. A. Atshan, and S. Khalil,  "Neutrosophic RHO –Ideal with Complete Neutrosophic RHO– Ideal in RHO–Algebras," Neutrosophic Sets and Systems, 55, 300-315, (2023).

    [58] S. M. Khalil,  "On Neutrosophic Delta-Generated Per-Continuous Functions in Neutrosophic Topological Spaces," Neutrosophic Sets and Systems, 48, 122-141, (2022).

    [59] A. R. Nivetha, M. Vigneshwaran,  N. M. Ali Abbas, and S. M. Khalil, "On N*gα- continuous in topological spaces of neutrosophy," Journal of Interdisciplinary Mathematics, 24(3), 677-685, (2021).

    [60] A. F. Al-Musawi  and S. Khalil, The characteristics of neutrosophic pi-generated regular-closed sets in Neutrosophic topological spaces, AIP Conf. Proc., 2820, 040001, (2023). https://doi.org/10.1063/5.0150477

    [61] K. Damodharan, M. Vigneshwaran, and S. M. Khalil, "Nδ*gα-Continuous and Irresolute Functions in Neutrosophic Topological Spaces," Neutrosophic Sets and Systems 38(1), 439-452, (2020).

    [62] N. M. Ali Abbas, and S. M. Khalil, "On New Classes of Neutrosophic Continuous and Contra Mappings in Neutrosophic Topological Spaces," Int. J. Nonlinear Anal. Appl., 12(1), 719-725, (2021).

    [63] N. M. Ali Abbas, S. M. Khalil, and M. Vigneshwaran, "The Neutrosophic Strongly Open Maps in Neutrosophic Bi-Topological Spaces," Journal of Interdisciplinary Mathematics 24(3), 667-675 (2021).

    [64] M. Al-Labadi, S. M. Khalil, Properties of Idealization Graph Over a Ring, Algorithms for Intelligent Systems, (ICIS 2023), 365-373, (2024) https://doi.org/10.1007/978-981-99-8976-8_31

    [65] N. M. Abbas, and S. Mahmood, "On α*-Open Sets in Topological Spaces," IOP Conference Series: Materials Science and Engineering, 571, 012021, (2019). doi:10.1088/1757-899X/571/1/012021.

    [66] N. M. Abbas, S. Khalil, Nα- Separation Axioms in Topological Spaces, Trends in Mathematics, (ICRDM 2022), 923-928, (2024). https://doi.org/10.1007/978-3-031-41420-6_79

    [67] M. Al-Labadi, S. M. Khalil, The idealization ring, AIP Conf. Proc. 3097, 080008 (2024). https://doi.org/10.1063/5.0209920

    [68] M. A. Hasan Hasab, S. Khalil, and A. F. Al-Musawi ,The English language and its encoding in topological spaces, Proc. SPIE, 13188, (MIEITS 2024),  1318814, (2024). doi: 10.1117/12.3030829.

    [69] M. Al-Labadi, S. Khalil, and E. Almohur,  Some properties of the circulant graphs, The International Society for Optical Engineering, vol. 12936, (ICMSCE 2023), 129361A, (2023). doi: 10.1117/12.3011425.

    [70] S. M. Khalil, and A. Hassan, "The Characterizations of δ-Algebras with their Ideals," IOP Conf. Series: Journal of Physics, 012108, (2021). doi:10.1088/1742-6596/1999/1/012108.

    [71] A. A. Atshan, S.M. Khalil, On regular ρ–algebras with strongly ρ̅− ideals in ρ–algebras, AIP Conf. Proc., 2834, 080004, (2023). https://doi.org/10.1063/5.0161546.

    [72] S. Saied,  and S. Khalil,, "Gamma ideal extension in gamma systems, Journal of Discrete Mathematical Sciences and Cryptography 24(6), 1675-1681, (2021).

    [73]   D. Molodtsov, Soft set theory-First results. Computer and Mathematics with Applications, 37(2), 19–31, (1999).

    [74]   S. Alkhazaleh, A. R. Salleh, and N. Hassan, Possibility fuzzy soft set. Advances in Decision Sciences, Article ID 479756, 2011.

    [75]  A. R. Salleh, S. Alkhazaleh,  N. Hassan,  and A. G. Ahmad,  Multiparameterized soft set. Journal of Mathematics and Statistics, 8(1), 92–97, (2012).

    [76]   A. Al-Quran and N. Hassan, Fuzzy parameterized single valued neutrosophic soft expert set theory and its application in decision making, International Journal of  Applied Decision Sciences, 9(2), 212–227, (2016).

    [78]   S. Broumi and F. Smarandache, Intuitionistic neutrosophic soft set. Journal of  Information and Computing Science, 8(2), 130–140, (2013).

    [79]   I. Deli,  Interval-valued neutrosophic soft sets and its decision making, International Journal of Machine Learning and Cybernetics, 2015. doi:10.1007/s13042-015-0461-3.

    [80] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24, 287-297, (2005).

    [81]   W.L. Gau, D.J. Buehrer, Vague sets. IEEE  Trans. Systems  Man and Cybernet, vol.  23(3), 610– 614, (1993).

    [82] S. Alkhazaleh, Neutrosophic vague set theory, Critical Review, vol.10, pp. 29–39, 2015.

    [83] R. Mallick, S. Pramanik, Pentapartitioned neutrosophic set and its  Properties, 36, 184-192, (2020).

    [84]   V. R. Radhika, .K . Mohana,  Pentapartitioned Neutrosophic Vague sets and its Topological Spaces.( Communicated)

    Cite This Article As :
    Al-Labadi, Manal. , Khalil, Shuker. , V., Radhika. , K., Mohana. Pentapartitioned Neutrosophic Vague Soft Sets and its Applications. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 64-83. DOI: https://doi.org/10.54216/IJNS.250207
    Al-Labadi, M. Khalil, S. V., R. K., M. (2025). Pentapartitioned Neutrosophic Vague Soft Sets and its Applications. International Journal of Neutrosophic Science, (), 64-83. DOI: https://doi.org/10.54216/IJNS.250207
    Al-Labadi, Manal. Khalil, Shuker. V., Radhika. K., Mohana. Pentapartitioned Neutrosophic Vague Soft Sets and its Applications. International Journal of Neutrosophic Science , no. (2025): 64-83. DOI: https://doi.org/10.54216/IJNS.250207
    Al-Labadi, M. , Khalil, S. , V., R. , K., M. (2025) . Pentapartitioned Neutrosophic Vague Soft Sets and its Applications. International Journal of Neutrosophic Science , () , 64-83 . DOI: https://doi.org/10.54216/IJNS.250207
    Al-Labadi M. , Khalil S. , V. R. , K. M. [2025]. Pentapartitioned Neutrosophic Vague Soft Sets and its Applications. International Journal of Neutrosophic Science. (): 64-83. DOI: https://doi.org/10.54216/IJNS.250207
    Al-Labadi, M. Khalil, S. V., R. K., M. "Pentapartitioned Neutrosophic Vague Soft Sets and its Applications," International Journal of Neutrosophic Science, vol. , no. , pp. 64-83, 2025. DOI: https://doi.org/10.54216/IJNS.250207