Volume 25 , Issue 2 , PP: 57-63, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Alaa Adnan Auad 1 * , Mohammed A. Hilal 2
Doi: https://doi.org/10.54216/IJNS.250206
A neutrosophic is a strong framework to characterize novel mathematical structures. This framework is more suitable and flexible set side by side to fuzzy sets and intuitionistic fuzzy sets. In this work, we focus on some famous mathematical spaces like Ls,p (u)when we work on displaying a feature the immediate and contrary theorems of unrestrained functions in the spaceLs,p (u)are considered. Also, some characteristics of modification symmetric and modulus of neutrosophic smoothness have been discussed. Moreover, the identical among approximate tools such as the neutrosophic K-functional and neutrosophic modulus of softness.
Neutrosophic K-functional , modulus of softness , unrestrained functions , neutrosophicLs,p(u)space and modification symmetric
[1] Zadeh, L. A. (1965). Fuzzy sets. Information Control, 8(3): 338-353.
[2] Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Lgics, American Research Press, Reoboth, NM, USA, 1998.
[3] Jamiatun Nadwa Ismail et al. The Integrated Novel Framework: Linguistic Variables in Pythagorean Neutrosophic Set with DEMATEL for Enhanced Decision Support. Int. J. Neutrosophic Sci., vol. 21, no. 2, pp. 129-141, 2023.
[4] Abed, M. M., Al-Jumaili, A. F., Al-sharqi, F. G. Some mathematical structures in a topological group. Journal of Algebra and Applied Mathematics. 2018, 16(2), 99-117.
[5] Al-Sharqi, F. G., Abed, M. M., & Mhassin, A. A. (2018). On polish groups and their applications. Journal of Engineering and Applied Sciences, 13(18), 7533-7536.
[6] F. Al-Sharqi, A.G. Ahmad, A. Al-Quran, Interval-valued neutrosophic soft expert set from real space to complex space, Computer Modeling in Engineering and Sciences, vol. 132(1), pp. 267–293, 2022.
[7] Hammad, F. N., & Abed, M. M. (2021, March). A new results of injective module with divisible property. In Journal of Physics: Conference Series (Vol. 1818, No. 1, p. 012168). IOP Publishing.
[8] A. Auad and A. Klaeif, Best co-proximal and Co-chebyshev of unbounded functions, Journal of Physics: Conference Series, 2322 (2022) 012033.
[9] Abed, M. M., & Al-Sharqi, F. G. (2018, May). Classical Artinian module and related topics. In Journal of Physics: Conference Series (Vol. 1003, No. 1, p. 012065). IOP Publishing.
[10] Jumaili, A. M. A., Auad, A. A., & Abed, M. M. (2019). A New Type of Strongly Faint Continuous Mappings and Their Applications in Topological Spaces. Journal of Engineering and Applied Sciences, 14(3), 905-912.
[11] Sankari, H., and Abobala, M., "Solving Three Conjectures About Neutrosophic Quadruple Vector Spaces", Neutrosophic Sets and Systems, Vol., pp., 2020.
[12] Bera, T., & Mahapatra, N. K. (2020). Continuity and convergence on neutrosophic soft normed linear spaces. International Journal of Fuzzy Computation and Modelling, 3(2), 156-186.
[13] Zail, S. H., Abed, M. M., & Faisal, A. S. (2022). Neutrosophic BCK-algebra and Ω-BCK-algebra. International Journal of Neutrosophic Science, 19(3), 8-15.
[14] Al-Quran, A., Al-Sharqi, F., Rodzi, Z. M., Aladil, M., Romdhini, M. U., Tahat, M. K., & Solaiman, O. S. (2023). The Algebraic Structures of Q-Complex Neutrosophic Soft Sets Associated with Groups and Subgroups. International Journal of Neutrosophic Science, 22(1), 60-77.
[15] M U Romdhini, A Al-Quran, F Al-Sharqi, M K Tahat, and A Lutfi. Exploring the Algebraic Structures of Q-Complex Neutrosophic Soft Fields. International Journal of Neutrosophic Science, 22(04):93–105, 2023.
[16] M U Romdhini, F Al-Sharqi, A Nawawi, A Al-Quran, and H Rashmanlou. Signless Laplacian energy of interval-valued fuzzy graph and its applications. Sains Malaysiana, 52(7):2127–2137, 2023.
[17] F. Al-Sharqi, A. Al-Quran and Z. M. Rodzi, Multi-Attribute Group Decision-Making Based on Aggregation Operator and Score Function of Bipolar Neutrosophic Hypersoft Environment, Neutrosophic Sets and Systems, 61(1), 465-492, 2023.
[18] A. Al-Quran, F. Al-Sharqi, A. U. Rahman and Z. M. Rodzi, The q-rung orthopair fuzzy-valued neutrosophic sets: Axiomatic properties, aggregation operators and applications. AIMS Mathematics, 9(2), 5038-5070, 2024.
[19] Abed, M. M., Hassan, N., & Al-Sharqi, F. (2022). On neutrosophic multiplication module. Neutrosophic Sets and Systems, 49(1), 198-208.
[20] Abed, M. M., Al-Sharqi, F., & Zail, S. H. (2021, March). A certain conditions on some rings give pp ring. In Journal of Physics: Conference Series (Vol. 1818, No. 1, p. 012068). IOP Publishing.
[21] Auad, A. A and Fayyadh, M. H. (2021). The direct and converse theorems for best approximation of algebraic polynomial in lp, α (x). In Journal of Physics: Conference Series (Vol. 1879, No. 3, p. 032010). IOP Publishing.
[22] Auad, A. A., & Hussein, A. A. (2019, July). Best simultaneous approximation in weighted space. In Journal of Physics: Conference Series (Vol. 1234, No. 1, p. 012111). IOP Publishing.
[23] Auad, A. A., Hilal, M. A., & Khalaf, N. S. (2023). Best approximation of unbounded functions by modulus of smoothness. European Journal of Pure and Applied Mathematics, 16(2), 944-952.
[24] Auad , A. A., & Al-Sharqi, F. (2023). Identical Theorem of Approximation Unbounded Functions by Linear Operators. Journal of Applied Mathematics & Informatics, 41(4), 801–810.
[25] A. Al-Quran, F. Al-Sharqi, K. Ullah, M. U. Romdhini, M. Balti and M. Alomai, Bipolar fuzzy hypersoft set and its application in decision making, International Journal of Neutrosophic Science, vol. 20, no. 4, pp. 65-77, 2023.
[26] Al-Sharqi F, Ahmad AG, Al-Quran A. Similarity measures on interval-complex neutrosophic soft sets with applications to decision making and medical diagnosis under uncertainty. Neutrosophic Sets and Systems, 2022; 51:495-515.
[27] K. Roshdi, Best approximation in metric spaces, American mathematical society, Vol. 103 (1988), No. 2, 579-586.
[28] H. Mazheri, S.M.S. Modarres: Some Results Concerning Proximinality and co-Proximinality, Nonlinear Anal., 62, (2005), 1123-1126.
[29] V. Indumathi and N. Prakash, E-proximinal subspaces, J. Math. Anal. Appl. 450, (2017), 1–11 .
[30] C. R. Jayanarayanan. Characterization of strong ball proximinality in -predual spaces. J. Convex Anal., 26(2), (2019),537–542.