International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 24 , Issue 4 , PP: 451-463, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

New algebraic structures approach towards complex interval valued Q-neutrosophic subbisemiring of bisemiring

Sharifah Sakinah Syed ahmad 1 * , Nasreen Kausar 2 , Murugan Palanikumar 3

  • 1 Department of Intelligent Computing & Analytics (ICA), Faculty of Information & Communication Technology, Universiti Teknikal Malaysia Melaka - (sakinah@utem.edu.my)
  • 2 Faculty of Arts and Science, Yildiz Technical University, Esenler, 34220, Istanbul, Turkey - (kausar.nasreen57@gmail.com)
  • 3 Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai-602105, India - (palanimaths86@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.240434

    Received: November 27, 2023 Revised: February 18 Accepted: May 29, 2024
    Abstract

    The notion of complex interval-valued q-neutrosophic subbisemiring (CIVqNSBS) is developed and examined. Additionally, we examine the homomorphic features and significant attributes of CIVqNSBS. We suggest the CIVqNSBS level sets for bisemirings. Consider a complex neutrosophic subset of bisemiring Δ, denoted as ℵ if and only if every non-empty level set Z(∂,) is a subbisemiring, where ∂, D[0, 1], then Z= )Z,Z, Z) is a CIVqNSBS of Δ. Let ℵ be the strongest complex neutrosophic relation of bisemiring Δ, and let Ψ be a CIVqNSBS of bisemiring Δ, if and only if Ψ is a CIVqNSBS of Δ × Δ, then ℵ is a CIVqNSBS of bisemiring Δ. We show that homomorphic images of all CIVqNSBSs are CIVqNSBSs, and homomorphic pre-images of all CIVqNSBSs are CIVqNSBSs. There are examples given to illustrate our results.

     

    Keywords :

    CIVqNSBS , CIVqNNSBS , SBS , Homomorphism

    References

    [1] L. A. Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338-353.

    [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), (1986) 87-96.

    [3] R. R. Yager, Pythagorean membership grades in multi criteria decision-making, IEEE Trans. Fuzzy Systems, 22, (2014), 958-965.

    [4] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani and T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems, Journal of Intelligent and Fuzzy Systems, 36, (2019), 2829-284.

    [5] B.C. Cuong and V. Kreinovich, Picture fuzzy sets a new concept for computational intelligence problems, in Proceedings of 2013 Third World Congress on Information and Communication Technologies (WICT 2013), IEEE, (2013), 1-6.

    [6] F. Smarandache, A unifying field in logics Neutrosophy Neutrosophic Probability, Set and Logic, Rehoboth American Research Press (1999).

    [7] Daniel Ramot, Ron Milo, Menahem Friedman, and Abraham Kandel, Complex fuzzy set, IEEE Transactions on Fuzzy System, 10(2), 2002.

    [8] S.J Golan, Semirings and their Applications, Kluwer Academic Publishers, London, 1999.

    [9] Faward Hussian, Raja Muhammad Hashism, Ajab Khan, Muhammad Naeem, Generalization of bisemirings, International Journal of Computer Science and Information Security, 14(9), (2016), 275-289.

    [10] K. M. Lee, Bipolar-valued fuzzy sets and their operations, Proc. Int. Conf. Intelligent Technologies Bangkok, Thailand, (2000) 307-312.

    [11] J. Ahsan, K. Saifullah, and F. Khan, Fuzzy semirings, Fuzzy Sets and systems, 60, (1993), 309-320.

    [12] Javed Ahsan, John N. Mordeson, and Muhammad Shabir, Fuzzy Semirings with Applications to Automata Theory, Springer Heidelberg New York Dordrecht, London, 2012.

    [13] M.K Sen, S. Ghosh An introduction to bisemirings, Southeast Asian Bulletin of Mathematics, 28(3)(2001), 547-559.

    [14] Palanikumar M, Arulmozhi K, On intuitionistic fuzzy normal subbisemirings of bisemirings, Nonlinear studies, 28(3), 2021, 717-721.

    [15] Palanikumar M, Selvi G, Ganeshsree Selvachandran and Tan S.L, New approach to bisemiring theory via the bipolar-valued neutrosophic normal sets, Neutrosophic Sets and Systems, 55, 427-450, 2023.

    Cite This Article As :
    Sakinah, Sharifah. , Kausar, Nasreen. , Palanikumar, Murugan. New algebraic structures approach towards complex interval valued Q-neutrosophic subbisemiring of bisemiring. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 451-463. DOI: https://doi.org/10.54216/IJNS.240434
    Sakinah, S. Kausar, N. Palanikumar, M. (2024). New algebraic structures approach towards complex interval valued Q-neutrosophic subbisemiring of bisemiring. International Journal of Neutrosophic Science, (), 451-463. DOI: https://doi.org/10.54216/IJNS.240434
    Sakinah, Sharifah. Kausar, Nasreen. Palanikumar, Murugan. New algebraic structures approach towards complex interval valued Q-neutrosophic subbisemiring of bisemiring. International Journal of Neutrosophic Science , no. (2024): 451-463. DOI: https://doi.org/10.54216/IJNS.240434
    Sakinah, S. , Kausar, N. , Palanikumar, M. (2024) . New algebraic structures approach towards complex interval valued Q-neutrosophic subbisemiring of bisemiring. International Journal of Neutrosophic Science , () , 451-463 . DOI: https://doi.org/10.54216/IJNS.240434
    Sakinah S. , Kausar N. , Palanikumar M. [2024]. New algebraic structures approach towards complex interval valued Q-neutrosophic subbisemiring of bisemiring. International Journal of Neutrosophic Science. (): 451-463. DOI: https://doi.org/10.54216/IJNS.240434
    Sakinah, S. Kausar, N. Palanikumar, M. "New algebraic structures approach towards complex interval valued Q-neutrosophic subbisemiring of bisemiring," International Journal of Neutrosophic Science, vol. , no. , pp. 451-463, 2024. DOI: https://doi.org/10.54216/IJNS.240434