International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 24 , Issue 4 , PP: 411-419, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Secondary Partial Ordering of Neutrosophic Fuzzy Matrices

Divya Shenoy Purushothama 1 *

  • 1 Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India - (divya.shenoy@manipal.edu)
  • Doi: https://doi.org/10.54216/IJNS.240431

    Received: November 24, 2023 Revised: February 12 Accepted: May 25, 2024
    Abstract

    In this article, we define secondary generalized inverse of a neutrosophic fuzzy matrices whenever exists. . Also, the S-ordering for the set of neutrosophic fuzzy matrices are defined and characterized. A necessary and sufficient condition for the existence of secondary generalized inverse of neutrosophic fuzzy matrices with the help of S-ordering is obtained.

    Keywords :

      , Neutrosophic fuzzy matrix , secodary generalized inverse , Matrix Partial order , S-ordering

    References

     [1] M. Anandhkumar, B. Kanimozhi, S. M. Chithra, V. Kamalakannan, S. Broumi, On various Inverse of Neutrosophic Fuzzy Matrices, International Journal of Neutrosophic Science, Volume 21, Issue 2, Pages 20 - 31,2023.

    [2] K. T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96, (1996).

    [3] J. Cen, Fuzzy matrix partial orderings and generalized inverses, Fuzzy Sets and Systems, Volume 105, Issue 3, 1 pp. 453-458 (1999)

    [4] S. Das, B. K. Roy, M. B. Kar, Neutrosophic fuzzy set and its application in decision making. J Ambient Intell Human Comput 11, 5017–5029 (2020). https://doi.org/10.1007/s12652-020-01808-3

    [5] I. Deli, S. Broumi, Neutrosophic soft matrices and NSM-decision making, Journal of Intelligent and Fuzzy Systems, 28 (5), pp. 2233-2241, (2015) https://www.iospress.nl/journal/journal-of-intelligentfuzzy-systems/ doi: 10.3233/IFS-141505

    [6] M. Dhar, S. Broumi, F. Smarandache, A Note on Square Neutrosophic Fuzzy Matrices, Neutrosophic Sets and Systems, Vol. 3, 2014

    [7] M. Dijana, P. S. Stanimirovic, I. I. Kyrchei. Index-MP and MP-index matrices[J]. Journal of Mathemat- ´ ical Analysis and Applications, 2023(0022247X): 128004.

    [8] D. Shenoy Secondary range symmetric matrices, [version 1; peer review: 1 approved]. F1000Research 2024, 13:112 (https://doi.org/10.12688/f1000research.144171.1)

    [9] W. B. V. Kandasamy and F. Smarandache,” FuzzyRelational Maps and Neutrosophic Relational Maps” , HEXISChurch Rock ,2004, book, 302 pages

    [10] M. P. Karantha, Mohana, D.P. Shenoy,Minus partial order on regular matrices, Linear and Multilinear Algebra, 64(5), pp. 929–941 (2016).

    [11] U. Kelathaya, M. P. Karantha, R. B Bapat, Matrix Partial Orders Based on the Secondary-Transpose, Indian Statistical Institute Series,Part F1229, pp. 317–336 (2023) DOI: https://.org/10.54216/IJNS.240431 Received: November 24, 2023 Revised: February 12 Accepted: May 25, 2024 418 International Journal of Neutrosophic Science (IJNS) Vol. 24, No. 4, PP. 411-419, 2024

    [12] M. Priya, L.Sebastian, T. Baiju, Neutrosophic Fuzzy Score Matrices: A Robust Framework for Advancing Medical Diagnostics, International Journal of Neutrosophic ScienceVolume 23, Issue 3, Pages 08 - 17, (2024)

    [13] M. Priya, L. Sebasastian, Hausdorff distance of neutrosophic fuzzy sets for medical diagnosis, AIP Conference ProceedingsVolume 2875, Issue 129 June 2023.

    [14] V. Savitha, D. P. Shenoy, K. Umashankar and R. B. Bapat, Secondary transpose of a matrix and generalized inverses, Journal of Algebra and its applications, 23(3), Article No. 2450052, 2024.

    [15] D. P. Shenoy, Drazin theta and theta Drazin matrices, Numerical Algebra, Control and Optimization, 14(2), pp: 273-283,(2024)doi: 10.3934/naco.2022023

    [16] D.P. Shenoy, Outer theta and theta outer inverses, IAENG International Journal of Applied Mathematics, 52(4), 2022, pp. 1020-1024.

    [17] D.P. Shenoy, Drazin-Theta inverse for rectangular matrices, IAENG International Journal of Computer Science, 50(4), 2023, pp. 1517-1521

    [18] F. Smarandache, ”Neutrosophy. / Neutrosophic Probability, Set, and Logic”, ProQuest Information & Learning, Ann Arbor, Michigan, USA, 105 p., 1998

    [19] F. Smarandache, Neutrosophy. Neutrosophic Probability, Set, and Logic. Amer. Res. Press, Rehoboth, USA, 105 p., 2006.

    [20] H. Wu, Y. Yuan, L.Wei, L. Pei, On entropy, similarity measure and cross-entropy of single-valued neutrosophic sets and their application in multi-attribute decision making, Soft Computing, 22 (22), pp. 7367-7376(2018).

    [21] L.A.Zadeh, Fuzzy Sets, Information and Control, 8, 338-353, (1965).

    Cite This Article As :
    Shenoy, Divya. Secondary Partial Ordering of Neutrosophic Fuzzy Matrices. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 411-419. DOI: https://doi.org/10.54216/IJNS.240431
    Shenoy, D. (2024). Secondary Partial Ordering of Neutrosophic Fuzzy Matrices. International Journal of Neutrosophic Science, (), 411-419. DOI: https://doi.org/10.54216/IJNS.240431
    Shenoy, Divya. Secondary Partial Ordering of Neutrosophic Fuzzy Matrices. International Journal of Neutrosophic Science , no. (2024): 411-419. DOI: https://doi.org/10.54216/IJNS.240431
    Shenoy, D. (2024) . Secondary Partial Ordering of Neutrosophic Fuzzy Matrices. International Journal of Neutrosophic Science , () , 411-419 . DOI: https://doi.org/10.54216/IJNS.240431
    Shenoy D. [2024]. Secondary Partial Ordering of Neutrosophic Fuzzy Matrices. International Journal of Neutrosophic Science. (): 411-419. DOI: https://doi.org/10.54216/IJNS.240431
    Shenoy, D. "Secondary Partial Ordering of Neutrosophic Fuzzy Matrices," International Journal of Neutrosophic Science, vol. , no. , pp. 411-419, 2024. DOI: https://doi.org/10.54216/IJNS.240431