International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 24 , Issue 4 , PP: 376-388, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Efforts of Neutrosophic Logic in Medical Image Processing and Analysis

Azmi Shawkat Abdulbaqi 1 , Bourair Al-Attar 2 , Lateef Abd Zaid Qudr 3 , Harshavardhan Reddy Penubadi 4 , Ravi Sekhar 5 * , Pritesh Shah 6 , Sushma Parihar 7 , Sushmitha Kallam 8 , Jamal Fadhil Tawfeq 9 , Hassan muwafaq Gheni 10

  • 1 University of Anbar, Renewable Energy Research Center, Ramadi, Iraq - (azmi_msc@uoanbar.edu.iq)
  • 2 College of Medicin University of Al-Ameed Karbala PO Box 198, Iraq - (bourair.alattar@alameed.edu.iq)
  • 3 Department of Computer, Techniques Engineering, AlSafwa University College, Almamalje str., 56001, Karbala, Iraq - (latifkhder@alsafwa.edu.iq)
  • 4 Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Pune 412115, Maharashtra, India; Myriad Genetics, Salt Lake City, UT, USA - (harshavdevops99@gmail.com)
  • 5 Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Pune 412115, Maharashtra, India - (ravi.sekhar@sitpune.edu.in)
  • 6 Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Pune 412115, Maharashtra, India - (pritesh.shah@sitpune.edu.in)
  • 7 Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Pune 412115, Maharashtra, India - (sushmap@sitpune.edu.in)
  • 8 Rajiv Gandhi University of Health Sciences, Bengaluru 560041, Karnataka, India - (dr.sushmithareddy18@gmail.com)
  • 9 Department of Medical Instrumentation Technical Engineering, Medical Technical College, Al-Farahidi University, Baghdad 00965, Iraq - (jamaltawfeq55@gmail.com)
  • 10 Computer Techniques Engineering Department, Al-Mustaqbal University College, Hillah 51001, Iraq - (hasan.muwafaq@mustaqbal-college.edu.iq)
  • Doi: https://doi.org/10.54216/IJNS.240428

    Received: November 20, 2023 Revised: February 05, 2024 Accepted: May 16, 2024
    Abstract

    Medical image processing is indispensable for correct diagnosis and planning of treatment. However, it is susceptible to many errors due to noise, artifacts, and the variability innate in anatomical structures themselves. Traditional image analysis methods hence suffer from these complexities in the images themselves and lead to probable inaccuracies in image analysis. This paper probes into the role of neutrosophic logic in the domain of medical image processing to seek better handling of these problems. The main objectives of the work were to optimize the noise reduction, image segmentation, feature extraction, and classification using the special capabilities of neutrosophic logic directed toward handling uncertainty and indeterminacy. Contributions The contributions of this study are multifaceted: it contributes by introducing detailed support for applying neutrosophic logic in a number of medical image processing tasks and integrates neutrosophic logic with prior techniques and evaluates their performance with traditional methods. The experimental results in the study are complete and demonstrate significant improvements in key metrics. For example, applying neutrosophic logic in noise reduction increased the peak signal-to-noise ratio of MRI images from 25 dB to 35 dB. In some segmentation tasks, the Dice coefficient for liver CT scans increased from 0.85 to 0.92. It increases the accuracy of feature extraction in breast cancer detection from 88% to 95%, while integrating neutrosophic logic with convolutional neural networks improves the accuracy in retinal image classification from 92% to 97%. All these results underline the strong role that neutrosophic logic can play in enhancing accuracy, robustness, and reliability in the processing of medical images. The result of the study concludes that neutrosophic logic not only improves the current limitations but also holds great promise for handling uncertainty in many medical fields, opening a promising way for future advancements in the field of medical imaging and health applications.

    Keywords :

    Neutrosophic Logic , Medical Image Processing , Noise Reduction , Image Enhancement , Image   ,   , Segmentation , Feature Extraction , Image Classification ,   , Uncertainty Handling

    References

    [1]       Koundal, D., & Sharma, B. (2019). Challenges and future directions in neutrosophic set-based medical image analysis. In Neutrosophic Set in Medical Image Analysis (pp. 313-343). Academic Press.

    [2]       Hatip, Ahmed. , Olgun, Necati. , Montajab, Sandy. Farmland Fertility Optimization with Deep Learning based COVID-19 Detection for Healthcare Decision Making. Journal of International Journal of Advances in Applied Computational Intelligence, vol. 5, no. 1, 2024, pp. 29-39. DOI: https://doi.org/10.54216/IJAACI.050103

    [3]       Salama, A. A., Shams, M. Y., Khalid, H. E., & Mousa, D. E. (2024). Enhancing Medical Image Quality using Neutrosophic Fuzzy Domain and Multi-Level Enhancement Transforms: A Comparative Study for Leukemia Detection and Classification. Neutrosophic Sets and Systems65(1), 3.

    [4]       Essa, A. K., Sabbagh, R., Salama, A. A., Khalid, H. E., Aziz, A. A. A., & Mohammed, A. A. (2023). An overview of neutrosophic theory in medicine and healthcare. Neutrosophic Sets and Systems61(1), 13.

    [5]       Mostafa, N. N., Kumar, A. K., & Ali, Y. (2024). A Comparative Study on X-Ray image Enhancement Based on Neutrosophic Set. Sustainable Machine Intelligence Journal7, 2-1.

    [6]       Mohan, R. J. (2021). Medical decision support system using data mining semicircular-based angle-oriented facial recognition using neutrosophic logic. In Handbook of Computational Intelligence in Biomedical Engineering and Healthcare (pp. 195-211). Academic Press.

    [7]       Rathnasabapathy, P., & Palanisam, D. (2022). An innovative neutrosophic combinatorial approach towards the fusion and edge detection of MR brain medical images. Neutrosophic Sets and Systems50(1), 34.

    [8]       Mirza, O. M., & Samak, A. H. (2024). Neutrosophic Fuzzy Logic-Based Hybrid CNN-LSTM for Accurate Chest X-ray Classification in COVID-19 Prediction. Appl. Math18(1), 139-152.

    [9]       Yasser, I., Twakol, A., Abd El-Khalek, A. A., Samrah, A., & Salama, A. A. (2020). COVID-X: novel health-fog framework based on neutrosophic classifier for confrontation covid-19. Neutrosophic Sets and Systems35, 1-21.

    [10]    Kaur, G., & Garg, H. (2022). A new method for image processing using generalized linguistic neutrosophic cubic aggregation operator. Complex & Intelligent Systems8(6), 4911-4937.

    [11]    Shan, J., Cheng, H. D., & Wang, Y. (2012). A novel segmentation method for breast ultrasound images based on neutrosophic l‐means clustering. Medical physics39(9), 5669-5682.

    [12]    Chai, J. S., Selvachandran, G., Smarandache, F., Gerogiannis, V. C., Son, L. H., Bui, Q. T., & Vo, B. (2021). New similarity measures for single-valued neutrosophic sets with applications in pattern recognition and medical diagnosis problems. Complex & Intelligent Systems, 7, 703-723.

    [13]    Awajan, I., Mohamad, M., & Al-Quran, A. (2021). Sentiment analysis technique and neutrosophic set theory for mining and ranking big data from online reviews. IEEE Access9, 47338-47353.

    [14]    Long, H. V., Ali, M., Khan, M., & Tu, D. N. (2019). A novel approach for fuzzy clustering based on neutrosophic association matrix. Computers & Industrial Engineering127, 687-697.

    [15]    Akbulut, Y., Şengür, A., Guo, Y., & Smarandache, F. (2017). A novel neutrosophic weighted extreme learning machine for imbalanced data set. Symmetry9(8), 142.

    [16]    Gomathy, V., Jayasankar, T., Rajaram, M., Devi, E. A., & Priyadharshini, S. (2022). Optimal neutrosophic rules based feature extraction for data classification using deep learning model. In Soft Computing for Data Analytics, Classification Model, and Control (pp. 57-79). Cham: Springer International Publishing.

    [17]    Thanh, N. D., Ali, M., & Son, L. H. (2017). A novel clustering algorithm in a neutrosophic recommender system for medical diagnosis. Cognitive computation9, 526-544.

    [18]    Abdel-Basset, M., Gamal, A., Manogaran, G., Son, L. H., & Long, H. V. (2020). A novel group decision making model based on neutrosophic sets for heart disease diagnosis. Multimedia Tools and Applications79, 9977-10002.

    [19]    Nabeeh, N. A., Abdel-Basset, M., El-Ghareeb, H. A., & Aboelfetouh, A. (2019). Neutrosophic multi-criteria decision making approach for iot-based enterprises. IEEE Access7, 59559-59574.

    [20]    T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. Hoboken, NJ: Wiley-Interscience, 2021.

     

    [21]    Hashmi, M. R., Riaz, M., & Smarandache, F. (2020). m-Polar neutrosophic topology with applications to multi-criteria decision-making in medical diagnosis and clustering analysis. International Journal of Fuzzy Systems22, 273-292.

    [22] Pamučar, D., Badi, I., Sanja, K., & Obradović, R. (2018). A novel approach for the selection of power-generation technology using a linguistic neutrosophic CODAS method: A case study in Libya. Energies11(9), 2489.

    Cite This Article As :
    Shawkat, Azmi. , Al-Attar, Bourair. , Abd, Lateef. , Reddy, Harshavardhan. , Sekhar, Ravi. , Shah, Pritesh. , Parihar, Sushma. , Kallam, Sushmitha. , Fadhil, Jamal. , muwafaq, Hassan. Efforts of Neutrosophic Logic in Medical Image Processing and Analysis. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 376-388. DOI: https://doi.org/10.54216/IJNS.240428
    Shawkat, A. Al-Attar, B. Abd, L. Reddy, H. Sekhar, R. Shah, P. Parihar, S. Kallam, S. Fadhil, J. muwafaq, H. (2024). Efforts of Neutrosophic Logic in Medical Image Processing and Analysis. International Journal of Neutrosophic Science, (), 376-388. DOI: https://doi.org/10.54216/IJNS.240428
    Shawkat, Azmi. Al-Attar, Bourair. Abd, Lateef. Reddy, Harshavardhan. Sekhar, Ravi. Shah, Pritesh. Parihar, Sushma. Kallam, Sushmitha. Fadhil, Jamal. muwafaq, Hassan. Efforts of Neutrosophic Logic in Medical Image Processing and Analysis. International Journal of Neutrosophic Science , no. (2024): 376-388. DOI: https://doi.org/10.54216/IJNS.240428
    Shawkat, A. , Al-Attar, B. , Abd, L. , Reddy, H. , Sekhar, R. , Shah, P. , Parihar, S. , Kallam, S. , Fadhil, J. , muwafaq, H. (2024) . Efforts of Neutrosophic Logic in Medical Image Processing and Analysis. International Journal of Neutrosophic Science , () , 376-388 . DOI: https://doi.org/10.54216/IJNS.240428
    Shawkat A. , Al-Attar B. , Abd L. , Reddy H. , Sekhar R. , Shah P. , Parihar S. , Kallam S. , Fadhil J. , muwafaq H. [2024]. Efforts of Neutrosophic Logic in Medical Image Processing and Analysis. International Journal of Neutrosophic Science. (): 376-388. DOI: https://doi.org/10.54216/IJNS.240428
    Shawkat, A. Al-Attar, B. Abd, L. Reddy, H. Sekhar, R. Shah, P. Parihar, S. Kallam, S. Fadhil, J. muwafaq, H. "Efforts of Neutrosophic Logic in Medical Image Processing and Analysis," International Journal of Neutrosophic Science, vol. , no. , pp. 376-388, 2024. DOI: https://doi.org/10.54216/IJNS.240428