International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 1 , PP: 370-381, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

An Innovative Approach to Financial Distress Prediction Using Relative Weighted Neutrosophic Valued Distances

Ilyоs Abdullayev 1 * , Eduard Osadchy 2 , Natalya Shcherbakova 3 , Irina Kosorukova 4

  • 1 Department of Management and Marketing, Urgench State University, Urgench, 220100, Uzbekistan - (abdullayev.i.s@mail.ru)
  • 2 Department of Economics and Management of Elabuga Institute, Kazan Federal University, Kazan, 420008, Russia - (eosadchy@mail.ru)
  • 3 Department of Management, RUDN University, Moscow, 117198, Russia - (shcherbakova-ns@mail.ru)
  • 4 Department of Corporate Finance and Corporate Governance, Financial University under the Government of the Russian Federation, Moscow, 125993, Russia: Department of Valuation and Corporate Finance, Moscow University for Industry and Finance "Synergy", Moscow, 127015, Russia - (i.v.kosorukova@yandex.ru)
  • Doi: https://doi.org/10.54216/IJNS.250133

    Received: January 9, 2024 Revised: April 8, 2024 Accepted: July 3, 2024
    Abstract

    The financial constraints of companies listed jeopardize the interests of employees and internal managers but also carries significant threats to outer investor and other stakeholders. Thus, there is need to create an effective financial distress predictive system.  The two most pressing issues in finance are assessing credit risk and predicting bankruptcies. Thus, credit scoring and financial distress prediction remain crucial areas of research in the financial industry. Previous research has aimed at the design of ML and statistical approaches to predict the financial distress of the company. Neutrosophic set may be utilized, which is a generality of classical, fuzzy, and intuitionistic fuzzy sets (IFS). They establish a foundation for addressing inconsistency, indeterminacy, and uncertainty associated with real-world challenges. This study presents an Innovative Approach to Financial Distress Prediction using Relative Weighted Neutrosophic Valued Distances (IAFDP-RWNVD) technique. The IAFDP-RWNVD technique intends to estimate the occurrence of financial distress in any firm or organization. In the IAFDP-RWNVD technique, two major processes are comprised. At the primary stage, the IAFDP-RWNVD technique applies RWNVD technique for the identification of financial distress. In the second stage, the IAFDP-RWNVD technique designs fish swarm algorithm (FSA) for finetuning the RWNVD model. The experimental outcomes of the IAFDP-RWNVD method is investigated using distinct aspects. The experimentation outcome shows the improvements of the IAFDP-RWNVD technique.

    Keywords :

    Intuitionistic Fuzzy Sets , Financial Distress Prediction , Neutrosophic Set , Fish Swarm Algorithm , Neutrosophic Valued Distance

    References

    [1]      Abobala, M., “AH-Subspaces in Neutrosophic Vector Spaces”, International Journal of Neutrosophic Science, vol. 6, pp. 80-86, 2020.

    [2]      Abobala, M., "A Study of AH-Substructures in n-Refined Neutrosophic Vector Spaces", International Journal of Neutrosophic Science", Vol. 9, pp.74-85, 2020.

    [3]      Khalid, M., Khalid, N.A. and Iqbal, R., 2020. MBJ-neutrosophic T-ideal on B-algebra. International Journal of Neutrosophic Science, 1(1), pp.29-39.

    [4]      Gamboa-Cruzado, J., Morante-Palomino, E., Rivero, C.A., Bendezú, M.L. and Fernández, D.M.M., 2024. Research on the Classification and Application of Physical Education Teaching Mode by Neutrosophic Analytic Hierarchy Process. International Journal of Neutrosophic Science, 23(3), pp.51-1.

    [5]      Saheb, A.H. and Buti, R.H., 2024. A Specific Category of Harmonic Functions Characterized By A Generalized Komatu Operator in Conjunction With The (RK) Integral Operator and Applications to Neutrosophic Complex Field. Full Length Article, 23(3), pp.44-4.

    [6]      Kamaluddin, A., Ishak, N. and Mohammed, N.F., 2019. Financial distress prediction through cash flow ratios analysis. International Journal of Financial Research, 10(3), pp.63-76.

    [7]      Keasey, K. and Watson, R., 2019. Financial distress prediction models: a review of their usefulness 1. Risk Management, pp.35-48.

    [8]      Huang, Y.P. and Yen, M.F., 2019. A new perspective of performance comparison among machine learning algorithms for financial distress prediction. Applied Soft Computing, 83, p.105663.

    [9]      Chen, C.C., Chen, C.D. and Lien, D., 2020. Financial distress prediction model: The effects of corporate governance indicators. Journal of Forecasting, 39(8), pp.1238-1252.

    [10]   Tang, X., Li, S., Tan, M. and Shi, W., 2020. Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods. Journal of Forecasting, 39(5), pp.769-787.

    [11]   Ayuni, N.W.D., Lasmini, N.N. and Dewi, K.C., 2024. Predicting financial distress of property and real estate companies using optimized support vector machine-particle swarm optimization (SVM-PSO). Bulletin of Social Informatics Theory and Application, 8(1), pp.97-106.

    [12]   Chen, Y., Kuang, X. and Guo, J., 2023. LiFoL: An Efficient Framework for Financial Distress Prediction in High-Dimensional Unbalanced Scenario. Ieee Transactions on Computational Social Systems, 11(2), pp.2784-2795.

    [13]   Wang, S. and Chi, G., 2024. Cost-sensitive stacking ensemble learning for company financial distress prediction. Expert Systems with Applications, p.124525.

    [14]   Zhang, Z., Wu, C., Qu, S. and Chen, X., 2022. An explainable artificial intelligence approach for financial distress prediction. Information Processing & Management, 59(4), p.102988.

    [15]   Wang, J., Jiang, C., Zhou, L. and Wang, Z., 2024. Assessing financial distress of SMEs through event propagation: An adaptive interpretable graph contrastive learning model. Decision Support Systems, 180, p.114195.

    [16]   Ghosh, I. and Dragan, P., 2023. Can financial stress be anticipated and explained? Uncovering the hidden pattern using EEMD-LSTM, EEMD-prophet, and XAI methodologies. Complex & Intelligent Systems, 9(4), pp.4169-4193.

    [17]   Taş, F., Topal, S. and Smarandache, F., 2018. Clustering neutrosophic data sets and neutrosophic valued metric spaces. Symmetry, 10(10), p.430

    [18]   Li, Z.Z., Wang, F.L., Qin, F., Yusoff, Y. and Zain, A.M., 2024. Feature selection of gene expression data using a modified artificial fish swarm algorithm with population variation. IEEE Access.

    [19]   https://www.kaggle.com/datasets/rizkia14/australian-credit-approval

    [20]   Elhoseny, M., Metawa, N. and El-Hasnony, I.M., 2022. A new metaheuristic optimization model for financial crisis prediction: Towards sustainable development. Sustainable Computing: Informatics and Systems, 35, p.100778

    Cite This Article As :
    Abdullayev, Ilyоs. , Osadchy, Eduard. , Shcherbakova, Natalya. , Kosorukova, Irina. An Innovative Approach to Financial Distress Prediction Using Relative Weighted Neutrosophic Valued Distances. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 370-381. DOI: https://doi.org/10.54216/IJNS.250133
    Abdullayev, I. Osadchy, E. Shcherbakova, N. Kosorukova, I. (2025). An Innovative Approach to Financial Distress Prediction Using Relative Weighted Neutrosophic Valued Distances. International Journal of Neutrosophic Science, (), 370-381. DOI: https://doi.org/10.54216/IJNS.250133
    Abdullayev, Ilyоs. Osadchy, Eduard. Shcherbakova, Natalya. Kosorukova, Irina. An Innovative Approach to Financial Distress Prediction Using Relative Weighted Neutrosophic Valued Distances. International Journal of Neutrosophic Science , no. (2025): 370-381. DOI: https://doi.org/10.54216/IJNS.250133
    Abdullayev, I. , Osadchy, E. , Shcherbakova, N. , Kosorukova, I. (2025) . An Innovative Approach to Financial Distress Prediction Using Relative Weighted Neutrosophic Valued Distances. International Journal of Neutrosophic Science , () , 370-381 . DOI: https://doi.org/10.54216/IJNS.250133
    Abdullayev I. , Osadchy E. , Shcherbakova N. , Kosorukova I. [2025]. An Innovative Approach to Financial Distress Prediction Using Relative Weighted Neutrosophic Valued Distances. International Journal of Neutrosophic Science. (): 370-381. DOI: https://doi.org/10.54216/IJNS.250133
    Abdullayev, I. Osadchy, E. Shcherbakova, N. Kosorukova, I. "An Innovative Approach to Financial Distress Prediction Using Relative Weighted Neutrosophic Valued Distances," International Journal of Neutrosophic Science, vol. , no. , pp. 370-381, 2025. DOI: https://doi.org/10.54216/IJNS.250133