International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 1 , PP: 258-278, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Counterpart of Marshall-Olkin bivariate copula with negative dependence and its neutrosophic application in meteorology

Rachid Bentoumi 1 * , Farid El Ktaibi 2 , Christophe Chesneau 3

  • 1 College of Natural and Health Sciences, Zayed University, Abu Dhabi, UAE - (rachid.bentoumi@zu.ac.ae)
  • 2 College of Natural and Health Sciences, Zayed University, Abu Dhabi, UAE - (farid.elktaibi@zu.ac.ae)
  • 3 Department of Mathematics, LMNO, Universite de caen-Normandie, Campus 2, Science 3, 14032 Caen, France - (hristophe.chesneau@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.250124

    Received: December 19, 2023 Revised: February 15, 2024 Accepted: July 03, 2024
    Abstract

    Variables that have revived new interest through computational developments and extensive data analysis. This article contributes to the subject by generalizing the bivariate copula introduced recently in8 and based on the concept of the counter-monotonic shock method. The proposed copula has the feature of covering the full range of negative dependence induced by two dependence parameters, which is not so common in the specialized literature. We examine the main characteristics of this copula. In particular, the absolutely continuous and singular copula components are derived. Analytical expressions of important concordance measures, such as Spearman’s rho and Kendall’s tau, are established, along with expressions of the product moments. A real neutrosophic data set, based on the daily quality of air in the New York Metropolitan Area, is used to illustrate the applicability of the proposed copula, with quite convincing results.

     

    Keywords :

    bivariate copula , counter-monotonic , negative dependence , singularity , dependence measures , statistical modeling , neutrosophic theory

      ,

    References

    [1] Bentoumi, R., El Ktaibi, F. and Mesfioui, M. A new family of bivariate exponential distributions with negative dependence based on counter-monotonic shock method. Entropy, 23, 548 (2021).

    [2] Cap´era`a, P. and Genest, C. Spearman’s is larger than Kendall’s for positively dependent random variables. J. Nonparametr. Statist. 2, 183-194 (1993).

    [3] Chambers, John M., William S. Cleveland, Beat Kleiner, and Paul A. Tukey. 1983. Graphical Methods for Data Analysis. London: Taylor & Francis/CRC.

    [4] Chesneau, C. Theoretical contributions to three generalized versions of the Celebioglu-Cuadras copula. Analytics, 2023, 2, 31-54 (2023).

    [5] Diaz,W. and Cuadras, C.M. An extension of the Gumbel-Barnett family of copulas. Metrika, 85, 913-926 (2022).

    [6] Dolati, Ali, Soheyla Mohseni, and Manuel U´ beda-Flores. 2014. Some results on a transformation of copulas and quasi-copulas. Information Sciences 257: 176–82.

    [7] Durante, F. Construction of non-exchangeable bivariate distribution functions. Statist. Papers, 50(2), 383- 391 (2009).

    [8] El Ktaibi, F., Bentoumi, R., Sottocornola, N., and Mesfioui, M. (2022). Bivariate copulas based on counter-monotonic shock method. Risks, 10(11), 202.

    [9] Ferguson, T.S. (1996). A Course in Large Sample Theory. Chapman & Hall, London.

    [10] Fredricks,G. A. and Nelsen, R. B. J. On the relationship between Spearman’s rho and Kendall’s tau for pairs of continuous random variables. Stat. Plann. Inference 137, 2143-2150 (2007).

    [11] Genest, C., Mesfioui, M. and Schulz, J. A new bivariate Poisson common shock model covering all possible degrees of dependence. Stat. Probab. Lett . 140, 202–209 (2018).

    [12] Ghosh, S., Bhuyan, P. and Finkelstein, M. On a bivariate copula for modeling negative dependence: application to New York air quality data. J. Statistical Methods & Applications., 31:1329–1353 (2022).

    [13] Hering, C. and Mai, J. F. Moment-based estimation of extendible Marshall-Olkin copulas, Metrika, 75(5), b601-620 (2012).

    [14] Ju Wu, Lianming Mou, Fang Liu , Haobin Liu, and Yi Liu (2020). Archimedean Copula-Based Hesitant Fuzzy Information Aggregation Operators for Multiple Attribute Decision Making. Mathematical Problems in Engineering, 2020. DOI: https://doi.org/10.1155/2020/6284245

    [15] Khoudraji, A. Contributions `a l’´etude des copules et `a la mod´elisation des valeurs extrˆemes bivari´ees. PhD thesis, Universit´e de Laval, Qu´ebec (Canada), 1995.

    [16] Lehmann, E. L. Some concepts of dependence. Ann. Math. Statist. 37, 1137-1153, (1966).

    [17] Liebscher, E. Construction of asymmetric multivariate copulas. J. Multivariate Anal., 99(10), 2234-2250 (2008).

    [18] Manstaviˇcius, M. and Bagdonas, G. A class of bivariate independence copula transformations. Fuzzy Sets and Systems, 428, 58-79 (2022).

    [19] Marshall, A.W. and Olkin, I. A multivariate exponential distribution. J. Am. Stat. Assoc. 62, 30–44 (1967).

    [20] Nelsen, R. B. An Introduction to Copulas, 2nd edition (Springer-Verlang, New York, 2006).

    [21] Roberts, D. J. and Zewotir, T. Copula geoadditive modelling of anaemia and malaria in young children in Kenya, Malawi, Tanzania and Uganda. Journal of Health, Population and Nutrition, 39, 8 (2020).

    [22] Ruiz-Rivas, C. and Cuadras, C. M. Inference properties of a one-parameter curved exponential family of distributions with given marginals. J. Multivariate Anal., 27, 447-456 (1988).

    [23] Saali, T., Mesfioui, M. and Shabri, A. (2023). Multivariate extension of Raftery copula. Mathematics 2023, 11, 414.

    [24] Saali, T., Mesfioui, M. and Shabri, A. (2024). A novel multivariate copula of Raftery type with multiple dependence parameters and its neutrosophic application in finance. Journal of International Journal of Neutrosophic Science, 23 (2), 296-307. DOI: https://doi.org/10.54216/IJNS.230224

    [25] Safari-Katesari, H., Samadi, S. Y. and Zaroudi, S. Modelling count data via copulas. Statistics, 54, 6, 1329-1355 (2020).

    [26] Shiau, J.-T. and Lien, Y. -C. Copula-based infilling methods for daily suspended sediment loads. Water, 13, 1701 (2021).

    [27] Sklar, A. Fonction de r´epartion `a n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris. 8 229-231, (1959).

    [28] Smarandache, F. Introduction To Neutrosophic Measure, Neutrosophic Integral, And Neutrosophic Probability; Sitech: Craiova, Romania, 2011

    [29] Taketomi, N., Yamamoto, K., Chesneau, C. and Emura, T. Parametric distributions for survival and reliability analyses, a review and historical sketch. Mathematics 2022, 10, 3907 (2022).

    [30] Tavakol, A., Rahmani, V. and Harrington, J. Jr. Probability of compound climate extremes in a changing climate: A copula-based study of hot, dry, and windy events in the central United States. Environmental Research Letters, 15, 10, 104058 (2020).

     
    Cite This Article As :
    Bentoumi, Rachid. , El, Farid. , Chesneau, Christophe. Counterpart of Marshall-Olkin bivariate copula with negative dependence and its neutrosophic application in meteorology. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 258-278. DOI: https://doi.org/10.54216/IJNS.250124
    Bentoumi, R. El, F. Chesneau, C. (2025). Counterpart of Marshall-Olkin bivariate copula with negative dependence and its neutrosophic application in meteorology. International Journal of Neutrosophic Science, (), 258-278. DOI: https://doi.org/10.54216/IJNS.250124
    Bentoumi, Rachid. El, Farid. Chesneau, Christophe. Counterpart of Marshall-Olkin bivariate copula with negative dependence and its neutrosophic application in meteorology. International Journal of Neutrosophic Science , no. (2025): 258-278. DOI: https://doi.org/10.54216/IJNS.250124
    Bentoumi, R. , El, F. , Chesneau, C. (2025) . Counterpart of Marshall-Olkin bivariate copula with negative dependence and its neutrosophic application in meteorology. International Journal of Neutrosophic Science , () , 258-278 . DOI: https://doi.org/10.54216/IJNS.250124
    Bentoumi R. , El F. , Chesneau C. [2025]. Counterpart of Marshall-Olkin bivariate copula with negative dependence and its neutrosophic application in meteorology. International Journal of Neutrosophic Science. (): 258-278. DOI: https://doi.org/10.54216/IJNS.250124
    Bentoumi, R. El, F. Chesneau, C. "Counterpart of Marshall-Olkin bivariate copula with negative dependence and its neutrosophic application in meteorology," International Journal of Neutrosophic Science, vol. , no. , pp. 258-278, 2025. DOI: https://doi.org/10.54216/IJNS.250124