International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 1 , PP: 148-159, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Enhancing Skin Cancer Diagnosis using Cubic Pythagorean Fuzzy Hypersoft Set with Salp Swarm Algorithm

Afef Selmi 1 , Imène Issaouı 2

  • 1 Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia - (a.selmi@qu.edu.sa)
  • 2 Unit of Scientific Research, Applied College, Qassim University, Buraydah, Saudi Arabia - (I.ISSAOUI@qu.edu.sa)
  • Doi: https://doi.org/10.54216/IJNS.250113

    Received: April 25, 2024 Revised: June 01, 2024 Accepted: July 01, 2024
    Abstract

    Due to the rapid increase in population density, medical sciences now face a major challenge in the automated detection of diseases. Intelligent system assists health personnel in earlier disease diagnosis and provides reliable treatment to reduce the fatality rates. Skin cancer is one of the most severe and deadliest kinds of cancer. A health professional uses dermoscopic images to manually diagnose skin tumors. This technique can be time-consuming and labor-intensive and needs a considerable level of expertise. The automatic recognition method is essential for the earlier diagnosis of skin tumors. In recent times, N-soft Set model has become widespread, which is a generalization of fuzzy set where all the elements have a membership value in the complement (0 to 1) and in the set (0 or 1). This study presents a Skin Cancer Diagnosis using Cubic Pythagorean Fuzzy Hypersoft Set (SCD-CPFHSS) technique. The presented SCD-CPFHSS technique performs identification of skin cancer using the application of NSs and metaheuristic algorithms. In the SCD-CPFHSS technique, neural architectural search network (NASNet) model derives feature extractors from the dermoscopic image. In addition, the efficacy of the NASNet model can be boosted by the design of salp swarm algorithm (SSA). For skin cancer recognition, the SCD-CPFHSS technique applies CPFHSS model. The experimental outcome of the SCD-CPFHSS methodology was validated using medical dataset. The extensive results pointed out that the SCD-CPFHSS technique reaches better results on skin cancer diagnosis

     

    Keywords :

    Artificial intelligence, Skin Cancer , Fuzzy Hypersoft Set , NASNet , Salp Swarm Algorithm , Dermoscopic Images

      ,

    References

    [1]     Tuqa A. H. Al-Tamimi, Luay A. A. Al-Swidi , Ali H. M. Al-Obaidi. "Partner Sets for Generalizations of MultiNeutrosophic Sets." International Journal of Neutrosophic Science, Vol. 24, No. 1, 2024 ,PP. 08-13

    [2]     Noaman, I.A.R., Hasan, A.H. and Ahmed, S.M., 2024. Optimizing Weibull Distribution Parameters for Improved Earthquake Modeling in Japan: A Comparative Approach. International Journal of Neutrosophic Science, 24(1), pp.65-5.

    [3]     Doaa Nihad Tomma, L. A. A. Al-Swidi. "Necessary and Sufficient Conditions for a Stability of the Concepts of Stable Interior and Stable Exterior via Neutrosophic Crisp Sets." International Journal of Neutrosophic Science, Vol. 24, No. 1, 2024 ,PP. 87-93

    [4]     Mathews, P., Sebastian, L. and Thankachan, B., 2024. Neutrosophic Fuzzy Score Matrices: A Robust Framework for Advancing Medical Diagnostics. International Journal of Neutrosophic Science, 23(3), pp.08-8.

    [5]     R. Saarumathi, W. Ritha. (2024). A Legitimate Productive Repertoire Replica Betwixt Envirotech Outlay Towards Fragile Commodities Using Trapezoidal Neutrosophic Fuzzy Number. International Journal of Neutrosophic Science, 24 ( 1 ), 104-118

    [6]     Tahir, M., Naeem, A., Malik, H., Tanveer, J., Naqvi, R.A. and Lee, S.W., 2023. DSCC_Net: multi-classification deep learning models for diagnosing of skin cancer using dermoscopic images. Cancers, 15(7), p.2179

    [7]     Naeem, A., Anees, T., Khalil, M., Zahra, K., Naqvi, R.A. and Lee, S.W., 2024. SNC_Net: Skin Cancer Detection by Integrating Handcrafted and Deep Learning-Based Features Using Dermoscopy Images. Mathematics, 12(7), p.1030.

    [8]     Gururaj, H.L., Manju, N., Nagarjun, A., Aradhya, V.N.M. and Flammini, F., 2023. DeepSkin: a deep learning approach for skin cancer classification. IEEE Access.

    [9]     Bassel, A., Abdulkareem, A.B., Alyasseri, Z.A.A., Sani, N.S. and Mohammed, H.J., 2022. Automatic malignant and benign skin cancer classification using a hybrid deep learning approach. Diagnostics, 12(10), p.2472.

    [10]   Sivakumar, M.S., Leo, L.M., Gurumekala, T., Sindhu, V. and Priyadharshini, A.S., 2024. Deep learning in skin lesion analysis for malignant melanoma cancer identification. Multimedia Tools and Applications, 83(6), pp.17833-17853.

    [11]   Albahli, S. and Nazir, T., 2023. A Circular Box-Based Deep Learning Model for the Identification of Signet Ring Cells from Histopathological Images. Bioengineering, 10(10), p.1147.

    [12]   Rubiu, G., Bologna, M., Cellina, M., Cè, M., Sala, D., Pagani, R., Mattavelli, E., Fazzini, D., Ibba, S., Papa, S. and Alì, M., 2023. Teeth segmentation in panoramic dental X-ray using mask regional convolutional neural network. Applied Sciences, 13(13), p.7947.

    [13]   Almutairi, A. and Khan, R.U., 2023. Image-Based Classical Features and Machine Learning Analysis of Skin Cancer Instances. Applied Sciences, 13(13), p.7712.

    [14]   Ibrahim, D.M., Elshennawy, N.M. and Sarhan, A.M., 2021. Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Computers in biology and medicine, 132, p.104348.

    [15]   Albelaihi, A. and Ibrahim, D.M., 2024. DeepDiabetic: An Identification System of Diabetic Eye Diseases Using Deep Neural Networks. IEEE Access.

    [16]   Zhang, L., Zhang, J., Gao, W., Bai, F., Li, N. and Ghadimi, N., 2024. A deep learning outline aimed at prompt skin cancer detection utilizing gated recurrent unit networks and improved orca predation algorithm. Biomedical Signal Processing and Control, 90, p.105858.

    [17]   Saeed, M., Naseer, A., Masood, H., Rehman, S.U. and Gruhn, V., 2023. The Power of Generative AI to Augment for Enhanced Skin Cancer Classification: A Deep Learning Approach. IEEE Access, 11, pp.130330-130344.

    [18]   Naeem, A., Anees, T., Fiza, M., Naqvi, R.A. and Lee, S.W., 2022. SCDNet: a deep learning-based framework for the multiclassification of skin cancer using dermoscopy images. Sensors, 22(15), p.5652.

    [19]   Zareen, S.S., Sun, G., Kundi, M., Qadri, S.F. and Qadri, S., 2024. Enhancing Skin Cancer Diagnosis with Deep Learning: A Hybrid CNN-RNN Approach. Computers, Materials & Continua, 79(1).

    [20]   Venugopal, V., Raj, N.I., Nath, M.K. and Stephen, N., 2023. A deep neural network using modified EfficientNet for skin cancer detection in dermoscopic images. Decision Analytics Journal, 8, p.100278.

    [21]   Babu, R.R. and Philip, F.M., 2024. Optimized deep learning for skin lesion segmentation and skin cancer detection. Biomedical Signal Processing and Control, 95, p.106292.

    [22]   Prasad, V., GSR, E.S. and MP, R., 2023. ADTBO: Aquila driving training-based optimization with deep learning for skin cancer detection. The Imaging Science Journal, pp.1-19.

    [23]   Nalluri, S. and Sasikala, R., 2024. A deep neural architecture for SOTA pneumonia detection from chest X-rays. International Journal of System Assurance Engineering and Management, 15(1), pp.489-502.

    [24]   Saleh, I., Borhan, N., Yunus, A. and Rahiman, W., 2024. Comprehensive Technical Review of Recent Bio-Inspired Population-Based Optimization (BPO) Algorithms for Mobile Robot Path Planning. IEEE Access.

    [25]   Prabu, E, Gopala, M, and Bobin, A. Enhanced Academic Stress-Coping Skills Assessment in College Students: A Comparative Study of Neutrosophic Distance Measure and Proposed Cubic Pythagorean Fuzzy Hypersoft TOPSIS Method. Journal of International Journal of Neutrosophic Science, vol. 23, no. 4, 2024, pp. 63-82. 

    [26]   Obayya, M.; Alhebri, A.; Maashi, M.; S. Salama, A.; Mustafa Hilal, A.; Alsaid, M.I.; Osman, A.E.; Alneil, A.A. Henry Gas Solubility Optimization Algorithm based Feature Extraction in Dermoscopic Images Analysis of Skin Cancer. Cancers 2023, 15, 2146.

     

    [27]   Arumugam, R.V., Saravanan, S. Automated multi-class skin cancer classification using white shark optimizer with ensemble learning classifier on dermoscopy images. Multimed Tools Appl (2024).

     
    Cite This Article As :
    Selmi, Afef. , Issaouı, Imène. Enhancing Skin Cancer Diagnosis using Cubic Pythagorean Fuzzy Hypersoft Set with Salp Swarm Algorithm. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 148-159. DOI: https://doi.org/10.54216/IJNS.250113
    Selmi, A. Issaouı, I. (2025). Enhancing Skin Cancer Diagnosis using Cubic Pythagorean Fuzzy Hypersoft Set with Salp Swarm Algorithm. International Journal of Neutrosophic Science, (), 148-159. DOI: https://doi.org/10.54216/IJNS.250113
    Selmi, Afef. Issaouı, Imène. Enhancing Skin Cancer Diagnosis using Cubic Pythagorean Fuzzy Hypersoft Set with Salp Swarm Algorithm. International Journal of Neutrosophic Science , no. (2025): 148-159. DOI: https://doi.org/10.54216/IJNS.250113
    Selmi, A. , Issaouı, I. (2025) . Enhancing Skin Cancer Diagnosis using Cubic Pythagorean Fuzzy Hypersoft Set with Salp Swarm Algorithm. International Journal of Neutrosophic Science , () , 148-159 . DOI: https://doi.org/10.54216/IJNS.250113
    Selmi A. , Issaouı I. [2025]. Enhancing Skin Cancer Diagnosis using Cubic Pythagorean Fuzzy Hypersoft Set with Salp Swarm Algorithm. International Journal of Neutrosophic Science. (): 148-159. DOI: https://doi.org/10.54216/IJNS.250113
    Selmi, A. Issaouı, I. "Enhancing Skin Cancer Diagnosis using Cubic Pythagorean Fuzzy Hypersoft Set with Salp Swarm Algorithm," International Journal of Neutrosophic Science, vol. , no. , pp. 148-159, 2025. DOI: https://doi.org/10.54216/IJNS.250113