International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 1 , PP: 75-80, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Modeling bladder cancer survival function based on neutrosophic inverse Gompertz distribution

Oday Esam Al-Saqal 1 , Zeina Ameer Hadied 2 , Zakariya Yahya Algamal 3 *

  • 1 Department of Sharia, University of Mosul, Mosul, Iraq - (Oday.esam@uomosul.edu.iq)
  • 2 University of Mosul, Mosul, Iraq - (zena_saeed@uomosul.edu.iq)
  • 3 Department of Statistics and Informatics, University of Mosul, Mosul, Iraq - (zakariya.algamal@uomosul.edu.iq)
  • Doi: https://doi.org/10.54216/IJNS.250106

    Received: December 30, 2023 Revised: February 02, 2024 Accepted: June 11, 2024
    Abstract

    In the field of survival analysis, the inverse Gompertz distribution is used to mimic human lifetime data patterns. The goal of the neutrosophic inverse Gompertz distribution (NIGD) is to describe a range of indeterminate survival data. The defined distribution is very helpful for modeling somewhat positively skewed unknown data. The main statistical characteristics of the created NIGD, such as the neutrosophic moments, hazard rate, and survival function, are covered in this paper. Additionally, the well-known maximum likelihood estimation method is used to estimate the neutrosophic parameters. A simulation study is conducted to see whether the projected neutrosophic parameters were reached. Not to mention that possible real-world uses of NIGD have been discussed using actual data. To show how well the suggested model performed in comparison to the present distributions, real data were used.

     

    Keywords :

    Survival analysis , Neutrosophic statistics , bladder cancer , inverse Gompertz distribution , hazard function

      ,

    References

    [1]       Smarandache, F., A unifying field in Logics: Neutrosophic Logic,  in Philosophy: American Research Press, pp. 1-141, 1999.

    [2]       Smarandache, F., Introduction to neutrosophic statistics. Infinite Study, 2014.

    [3]       Smarandache, F., Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics (second version), International Journal of Neutrosophic Science, vol. 19, no. 1, pp. 148-165, 2022.

    [4]       Guan, H., Dai, Z., Guan, S., and Zhao, A., A Neutrosophic Forecasting Model for Time Series Based on First-Order State and Information Entropy of High-Order Fluctuation, Entropy (Basel), vol. 21, no. 5, May 1 2019.

    [5]       Mao, X., Guoxi, Z., M. Fallah, and S. A. Edalatpanah, "A Neutrosophic-Based Approach in Data Envelopment Analysis with Undesirable Outputs," Mathematical Problems in Engineering, vol. 2020, pp. 1-8, 2020.

    [6]       Aslam, M., A New Failure-Censored Reliability Test Using Neutrosophic Statistical Interval Method International Journal of Fuzzy Systems, vol. 21, no. 4, pp. 1214-1220, 2019.

    [7]       Taş, F., Topal,S., and Smarandache,F., Clustering Neutrosophic Data Sets and Neutrosophic Valued Metric Spaces, Symmetry, vol. 10, no. 10, 2018.

    [8]       Alanaz, M. M.,and Algamal, Z. Y., Neutrosophic exponentiated inverse Rayleigh distribution: Properties and Applications, International Journal of Neutrosophic Science, vol. 21, no. 4, pp. 36-42, 2023.

    [9]       Alanaz, M. M. Mustafa, , M. Y., and Z. Y. Algamal, Neutrosophic Lindley distribution with application for Alloying Metal Melting Point,  International Journal of Neutrosophic Science, vol. 21, no. 4, pp. 65-71, 2023.

    [10]     Algamal, Z. Y., Alobaidi, N. N., Hamad, A. A., Alanaz, M. M., and M. Y. Mustafa, Neutrosophic Beta-Lindley distribution: Mathematical properties and modeling bladder cancer data,  International Journal of Neutrosophic Science, vol. 23, no. 2, pp. 186-194, 2024.

    [11]     Bibani, A. A., and Algamal, Z. Y., Survival Function Estimation for Fuzzy Gompertz Distribution with neutrosophic data,  International Journal of Neutrosophic Science, vol. 21, no. 3, pp. 137-142, 2023.

    [12]     Mustafa, M. Y., and Algamal, Z. Y., Neutrosophic inverse power Lindley distribution: A modeling and application for bladder cancer patients,  International Journal of Neutrosophic Science, vol. 21, no. 2, pp. 216-223, 2023.

    [13]     Ahsan-ul-Haq, M. J. N. S. S., Neutrosophic Kumaraswamy distribution with engineering application,  vol. 49, pp. 269-276, 2022.

    [14]     Albassam, M., Ahsan-ul-Haq, M., and Aslam, M., Weibull distribution under indeterminacy with applications,  AIMS Mathematics, vol. 8, no. 5, pp. 10745-10757, 2023.

    [15]     Alsoboh, A., Amourah, A., Darus, M., and Sharefeen, R. I. A. , Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions,  Mathematics, vol. 11, no. 4, 2023.

    [16]     Duan, W.-Q.,  Khan, Z., Gulistan, M., Khurshid, A. and Stevic, Z., Neutrosophic Exponential Distribution: Modeling and Applications for Complex Data Analysis,  Complexity, vol. 2021, pp. 1-8, 2021.

    [17]     Granados, C. J. H. J. o. M.,  and Statistics, Some discrete neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables,  vol. 51, no. 5, pp. 1442-1457, 2022.

    [18]     Hassan, M. K. H. and Aslam, M., DUS-neutrosophic multivariate inverse Weibull distribution: properties and applications, Complex & Intelligent Systems, 2023.

    [19]     Khan, Z., Almazah, M. M. A., Hamood Odhah, O., Alshanbari, H. M., and Mehmood, T., Generalized Pareto Model: Properties and Applications in Neutrosophic Data Modeling,  Mathematical Problems in Engineering, vol. 2022, pp. 1-11, 2022.

    [20]     Khan, Z., Amin, A., Khan, S. A., Gulistan, M. J. N. S. and Systems, Statistical development of the neutrosophic Lognormal model with application to environmental data,  vol. 47, no. 1, p. 1, 2021.

    [21]     Rao, G. S., Neutrosophic Log-Logistic Distribution Model in Complex Alloy Metal Melting Point Applications,  International Journal of Computational Intelligence Systems, vol. 16, no. 1, 2023.

    [22]     Shah, F., Aslam, M.,  Khan, Z., Almazah, M. M. A., Alduais, F. S., and Gulzar, M.,"On Neutrosophic Extension of the Maxwell Model: Properties and Applications, Journal of Function Spaces, vol. 2022, pp. 1-9, 2022.

    [23]     Khan, Z., Gulistan, M., Kausar, N., and Park, C., Neutrosophic Rayleigh Model With Some Basic Characteristics and Engineering Applications,  IEEE Access, vol. 9, pp. 71277-71283, 2021.

    [24]     Aslam, M. A.,  Neutrosophic Rayleigh distribution with some basic properties and application,  in Neutrosophic Sets in Decision Analysis and Operations Research: IGI Global, 2020, pp. 119-128.

    [25]     Eliwa, M. S., El-Morshedy, M., and M. Ibrahim, Inverse Gompertz Distribution: Properties and Different Estimation Methods with Application to Complete and Censored Data, Annals of Data Science, vol. 6, no. 2, pp. 321-339, 2018.

    [26]        Lee, E. T., and Wang, J., Statistical methods 

     
    Cite This Article As :
    Esam, Oday. , Ameer, Zeina. , Yahya, Zakariya. Modeling bladder cancer survival function based on neutrosophic inverse Gompertz distribution. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 75-80. DOI: https://doi.org/10.54216/IJNS.250106
    Esam, O. Ameer, Z. Yahya, Z. (2025). Modeling bladder cancer survival function based on neutrosophic inverse Gompertz distribution. International Journal of Neutrosophic Science, (), 75-80. DOI: https://doi.org/10.54216/IJNS.250106
    Esam, Oday. Ameer, Zeina. Yahya, Zakariya. Modeling bladder cancer survival function based on neutrosophic inverse Gompertz distribution. International Journal of Neutrosophic Science , no. (2025): 75-80. DOI: https://doi.org/10.54216/IJNS.250106
    Esam, O. , Ameer, Z. , Yahya, Z. (2025) . Modeling bladder cancer survival function based on neutrosophic inverse Gompertz distribution. International Journal of Neutrosophic Science , () , 75-80 . DOI: https://doi.org/10.54216/IJNS.250106
    Esam O. , Ameer Z. , Yahya Z. [2025]. Modeling bladder cancer survival function based on neutrosophic inverse Gompertz distribution. International Journal of Neutrosophic Science. (): 75-80. DOI: https://doi.org/10.54216/IJNS.250106
    Esam, O. Ameer, Z. Yahya, Z. "Modeling bladder cancer survival function based on neutrosophic inverse Gompertz distribution," International Journal of Neutrosophic Science, vol. , no. , pp. 75-80, 2025. DOI: https://doi.org/10.54216/IJNS.250106