International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 1 , PP: 51-63, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Integrating Neutrosophic Vague N-Soft Sets with Chimp Optimization Algorithm for Sentiment Analysis on Social Media

Imène Issaoui 1 * , Afef Selmi 2

  • 1 Unit of Scientific Research, Applied College, Qassim University, Buraydah, Saudi Arabia - (i.issaoui@qu.edu.sa)
  • 2 Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia - (a.selmi@qu.edu.sa)
  • Doi: https://doi.org/10.54216/IJNS.250104

    Received: January 08, 2024 Revised: March 05, 2024 Accepted: June 18, 2024
    Abstract

    The swift development in social media through the internet produces vast data in a real-time scenario that has startling effects on large datasets. It generated the high-level use of sentiments and emotions in social networking media. Sentiment analysis (SA) using a neutrosophic set presents a new technique to handle the integral ambiguity and uncertainty in text datasets. Different from classical approaches, which categorize sentiment as positive, negative, or neutral, the neutrosophic set allows for the comparison analysis of truth-, indeterminacy-, and falsie-membership functions for all the sentiments. This allows a more flexible and nuanced representation of sentiments, which accommodates the contradictions and complexities commonly depicted in natural language. SA can accomplish high performance and depth in interpreting and understanding the emotions expressed in uncertain and diverse text datasets by leveraging a neutrosophic set. This manuscript presents a Neutrosophic Vague N-Soft set with a Chimp Optimization Algorithm for Sentiment Analysis (NVNSS-COASA) technique on Social Media. The NVNSS-COASA technique is initiated by the comprehensive preprocessing stage to normalize and clean the text dataset, which ensures superior input for the succeeding stage. Then, the Term Frequency-Inverse Document Frequency (TF-IDF) mechanism is employed to convert the preprocessed text into mathematical features, which capture the word importance in terms of datasets. Subsequently, a strong NVNSS classifier is employed for accurately categorizing the sentiment. We integrate COA for the parameter tuning to further improve the performance of the method. The simulation outcomes emphasized that the NVNSS-COASA method shows superior outcomes over other techniques. The outcomes indicated that the NVNSS-COASA can able to deliver reliable and precise insights from the text dataset.

    Keywords :

    Social Media , Artificial Intelligence , Sentiment Analysis , Neutrosophic Sets , Machine Learning

    References

    [1]     Abobala, M., 2020. n-Cyclic Refined Neutrosophic Algebraic Systems Of Sub-Indeterminacies, An Application To Rings and Modules. International Journal of Neutrosophic Science, 12, pp.81-95.

    [2]     Abobala, M,. "Classical Homomorphisms Between Refined Neutrosophic Rings and Neutrosophic Rings", International Journal of Neutrosophic Science, Vol. 5, pp. 72-75, 2020.

    [3]     Alhamido, R., and Abobala, M., "AH-Substructures in Neutrosophic Modules", International Journal of Neutrosophic Science, Vol. 7, pp. 79-86 , 2020.

    [4]     Hatip, A., and Olgun, N., " On Refined Neutrosophic R-Module", International Journal of Neutrosophic Science, Vol. 7, pp.87-96, 2020.

    [5]     Ibrahim, M.A., Agboola, A.A.A, Badmus, B.S., and Akinleye, S.A., "On Refined Neutrosophic Vector Spaces I", International Journal of Neutrosophic Science, Vol. 7, pp. 97-109, 2020.

    [6]     A.R. Pathak, M. Pandey, S. Rautaray, Topic-level sentiment analysis of social media data using deep learning, Appl. Soft Comput. 108 (2021), 107440.

    [7]     Y.Y. Cheng, Y.M. Chen, W.C. Yeh, Y.C. Chang, Valence and Arousal-Infused BiDirectional LSTM for Sentiment Analysis of Government Social Media Management, Appl. Sci. 11 (2) (2021) 880.

    [8]     A. Alsayat, Improving Sentiment Analysis for Social Media Applications Using an Ensemble Deep Learning Language Model, Arab. J. Sci. Eng. 47 (2) (2022) 2499–2511.

    [9]     P.K. Jain, W. Quamer, V. Saravanan, R. Pamula, Employing BERT-DCNN with sentic knowledge base for social media sentiment analysis, J. Ambient Intell. Hum. Comput. (2022) 1–13.

    [10]   Z. Jin, X. Zhao, Y. Liu, Heterogeneous graph network embedding for sentiment analysis on social media, Cogn. Comput. 13 (1) (2021) 81–95.

    [11]   Ali, A., Khan, M., Khan, K., Khan, R.U. and Aloraini, A., 2024. Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning. Computers, Materials & Continua, 79(1).

    [12]   Saleh, H., Mostafa, S., Alharbi, A., El-Sappagh, S. and Alkhalifah, T., 2022. Heterogeneous ensemble deep learning model for enhanced Arabic sentiment analysis. Sensors, 22(10), p.3707.

    [13]   Albahli, S. and Nawaz, M., 2023. TSM-CV: Twitter Sentiment Analysis for COVID-19 Vaccines Using Deep Learning. Electronics, 12(15), p.3372.

    [14]   Albahli, S., Irtaza, A., Nazir, T., Mehmood, A., Alkhalifah, A. and Albattah, W., 2022. A machine learning method for prediction of stock market using real-time twitter data. Electronics, 11(20), p.3414.

    [15]   Alajlan, N.N. and Ibrahim, D.M., 2022. TinyML: Enabling of inference deep learning models on ultra-low-power IoT edge devices for AI applications. Micromachines, 13(6), p.851.

    [16]   Mohammed, R., Shihab, I. and Musa, M., 2024. Social Media Data-Based Business Intelligence Analysis Using Deep Learning. International Journal of Intelligent Engineering & Systems, 17(1).

    [17]   Almasoud, A.S., Alshahrani, H.J., Hassan, A.Q., Almalki, N.S. and Motwakel, A., 2023. Modified Aquila Optimizer with Stacked Deep Learning-Based Sentiment Analysis of COVID-19 Tweets. Electronics, 12(19), p.4125.

    [18]   Kodati, D. and Dasari, C.M., 2024. Negative emotion detection on social media during the peak time of COVID-19 through deep learning with an auto-regressive transformer. Engineering Applications of Artificial Intelligence, 127, p.107361.

    [19]   Thandaga Jwalanaiah, S.J., Jeena Jacob, I. and Mandava, A.K., 2023. Effective deep learning based multimodal sentiment analysis from unstructured big data. Expert Systems, 40(1), p.e13096.

    [20]   Anilkumar, B., Lakshmi Devi, N., Kotagiri, S. and Mary Sowjanya, A., 2024. Design an image-based sentiment analysis system using a deep convolutional neural network and hyperparameter optimization. Multimedia Tools and Applications, pp.1-20.

    [21]   Swapnarekha, H., Nayak, J., Behera, H.S., Dash, P.B. and Pelusi, D., 2023. An optimistic firefly algorithm-based deep learning approach for sentiment analysis of COVID-19 tweets. Mathematical Biosciences and Engineering, 20(2), pp.2382-2407.

    [22]   Halawani, H.T., Mashraqi, A.M., Badr, S.K. and Alkhalaf, S., 2023. Automated sentiment analysis in social media using Harris Hawks optimisation and deep learning techniques. Alexandria Engineering Journal, 80, pp.433-443.

    [23]   Liu, J., Chen, Y., Chen, Z. and Zhang, Y., 2020. Multi-attribute decision making method based on neutrosophic vague N-soft sets. Symmetry, 12(5), p.853.

    [24]   Zhang, L. and Chen, X., 2024. Enhanced chimp hierarchy optimization algorithm with adaptive lens imaging for feature selection in data classification. Scientific Reports, 14(1), p.6910.

    Cite This Article As :
    Issaoui, Imène. , Selmi, Afef. Integrating Neutrosophic Vague N-Soft Sets with Chimp Optimization Algorithm for Sentiment Analysis on Social Media. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 51-63. DOI: https://doi.org/10.54216/IJNS.250104
    Issaoui, I. Selmi, A. (2025). Integrating Neutrosophic Vague N-Soft Sets with Chimp Optimization Algorithm for Sentiment Analysis on Social Media. International Journal of Neutrosophic Science, (), 51-63. DOI: https://doi.org/10.54216/IJNS.250104
    Issaoui, Imène. Selmi, Afef. Integrating Neutrosophic Vague N-Soft Sets with Chimp Optimization Algorithm for Sentiment Analysis on Social Media. International Journal of Neutrosophic Science , no. (2025): 51-63. DOI: https://doi.org/10.54216/IJNS.250104
    Issaoui, I. , Selmi, A. (2025) . Integrating Neutrosophic Vague N-Soft Sets with Chimp Optimization Algorithm for Sentiment Analysis on Social Media. International Journal of Neutrosophic Science , () , 51-63 . DOI: https://doi.org/10.54216/IJNS.250104
    Issaoui I. , Selmi A. [2025]. Integrating Neutrosophic Vague N-Soft Sets with Chimp Optimization Algorithm for Sentiment Analysis on Social Media. International Journal of Neutrosophic Science. (): 51-63. DOI: https://doi.org/10.54216/IJNS.250104
    Issaoui, I. Selmi, A. "Integrating Neutrosophic Vague N-Soft Sets with Chimp Optimization Algorithm for Sentiment Analysis on Social Media," International Journal of Neutrosophic Science, vol. , no. , pp. 51-63, 2025. DOI: https://doi.org/10.54216/IJNS.250104