Volume 24 , Issue 4 , PP: 315-323, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
Tariq Al-Hawary 1 * , Ala Amourah 2 , Jamal Salah 3 , Feras Yousef 4
Doi: https://doi.org/10.54216/IJNS.240422
The aim of this article is to establish two new and qualitative subfamilies F(ε, κ, ℵ) and G(ε, κ, ℵ) of biunivalent functions. For functions in these subfamilies, we determine the first two Maclaurin coefficient estimations |C2| and |C3|, and address the Fekete–Szeg¨o problem. Additionally, we mention some corollaries related to the main results.
Analytic function , Univalent and bi-univalent functions , Fekete-Szeg¨ , o problem.
[1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent Ma- Minda starlike and convex functions, Appl. Math. Lett. 25 (3) (2012), 344–351.
[2] A. Amourah, B. A. Frasin, G. Murugusundaramoorthy, T. Al-Hawary, Bi-Bazileviˆc functions of order ϑ +iδ associated with (p; q)-Lucas polynomials. AIMS Mathematics 6.5 (2021), 4296-4305.
[3] C. Carathe´odory, U¨ ber den Variabilita¨tsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 1907, 64, 95–115.
[4] H. O. Guney, G. Murugusundaramoorthy and J. Sokol, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapientiae, Math., 10 (2018), no. 1, 70-84.
[5] G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat., 28(2017), 1357–1366.
[6] Z. Peng,G. Murugusundaramoorthy, T. Janani, Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator, J. Complex Analysis, Volume 2014, Article ID 693908, 6 pages.
[7] F. Yousef, T. Al-Hawary, G. Murugusundaramoorthy, Fekete-Szeg¨o functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator. Afrika Matematika 30, no. 3-4 (2019): 495–503.
[8] P. Zaprawa, Estimates of initial coefficients for bi-univalent functions. Abstr. Appl. Anal. 2014, 2014, 357480.
[9] M. Fekete, G. Szego¨, Eine Bemerkung A˜ber ungerade schlichte Funktionen. Journal of the LondonMathematical Society, 1.2 (1933), 85-89.
[10] T. Al-Hawary, Coefficient bounds and Fekete–Szeg¨o problem for qualitative subclass of bi-univalent functions. Afrika Matematika 33 (1), 1-9.