International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 24 , Issue 3 , PP: 21-33, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Bankruptcy Prediction using Diophantine Neutrosophic Number for Enterprise Resource Planning on Value of Accounting Information

Adeeb Alhebri 1 , Gubarah Farah Gubarah 2 * , Abdulkarim Alsayegh 3 , Radwan Hussien Alkebssi 4 , Mohammed Al-Matari 5

  • 1 Accounting Program, Applied College at Muhyle, King Khalid University, Saudi Arabia - (aalhebri@kku.edu.sa)
  • 2 Applied Management Program, Applied College at Tanumah, King Khalid University, Saudi Arabia. 3Ph.D. Holder, Ministry of Education, Kuwait - (gmohamed@kku.edu.sa)
  • 3 Ph.D. Holder, Ministry of Education, Kuwait. - (dr.abdulkarim_alsayegh@hotmail.com)
  • 4 Accounting Department, Business School, Xi’an International studies university, China. - (Ralkebsee@xisu.edu.cn)
  • 5 Department of Accounting, College of Business, Jouf University, Saudi Arabia, and Faculty of Commerce and Economics, Amran University, Amran, Yemen. - (Ibrahim_matri7@yahoo.com)
  • Doi: https://doi.org/10.54216/IJNS.240302

    Received: November 14, 2023 Revised: February 18, 2024 Accepted: May 01, 2024
    Abstract

    Enterprise Resource Planning (ERP) is paramount in modern business, integrating many fundamental processes such as human resources, economics, customer relationship management, and supply chain management into a comprehensive infrastructure. Leveraging the wide-ranging data apprehended by ERP techniques, an organization could improve its financial analysis abilities, involving bankruptcy prediction. By using analytics methods like predictive modeling and machine learning, the ERP system could examine market trends, historical financial information, key performance indicators, and other related factors to evaluate the financial stability and health of the company. This prediction insight empowers businesses to vigorously detect advanced indicators of financial distress, alleviate risks, and make informed strategic decisions to avoid bankruptcy. Integrating bankruptcy prediction techniques within the ERP system allows organizations to reinforce contingency strategies, financial planning, and risk management, protecting long-term competitiveness and sustainability in a dynamic business environment. This study introduces a Bankruptcy Prediction using the Diophantine Neutrosophic Number for Enterprise Resource Planning (BPDNN-ERP) technique on the value of accounting information. The BPDNN-ERP technique begins with a harmony search algorithm (HSA) for electing feature subsets. In addition, the BPDNN-ERP technique applies the DNN model for the prediction of bankruptcies. To increase the performance of the DNN model, the manta ray foraging optimization (MRFO) model can be used. The experimental study demonstrated the enhanced performance of the BPDNN-ERP algorithm equated to existing forecasting methods

    Keywords :

    Bankruptcy Prediction , Enterprise Resource Planning , Harmony Search Algorithm , MRFO , Diophantine Neutrosophic Number

    References

     

    [1]     Barboza, Flavio, Herbert Kimura, and Edward Altman. 2017. Machine learning models and bankruptcy prediction. Experts System with Applications 83: 405–17.

    [2]     Tobback, Ellen, Tony Bellotti, Julie Moeyersoms, Marija Stankova, and David Martens. 2017. Bankruptcy prediction for SMEs using relational data. Decision Support Systems 102: 69–81.

    [3]     du Jardin, Philippe. 2015. Bankruptcy prediction using terminal failure processes. European Journal of Operational Research 242: 286–303

    [4]     Mai, Feng, Shaonan Tian, Chihoon Lee, and Ling Ma. 2018. Deep learning models for bankruptcy prediction using textual disclosures. European Journal of Operational Research 274: 743–58.

    [5]     Noaman, I.A.R., Hasan, A.H. and Ahmed, S.M., 2024. Optimizing Weibull Distribution Parameters for Improved Earthquake Modeling in Japan: A Comparative Approach. International Journal of Neutrosophic Science, 24(1), pp.65-5.

    [6]     Doaa Nihad Tomma, L. A. A. Al-Swidi. "Necessary and Sufficient Conditions for a Stability of the Concepts of Stable Interior and Stable Exterior via Neutrosophic Crisp Sets." International Journal of Neutrosophic Science, Vol. 24, No. 1, 2024 ,PP. 87-93

    [7]     Mathews, P., Sebastian, L. and Thankachan, B., 2024. Neutrosophic Fuzzy Score Matrices: A Robust Framework for Advancing Medical Diagnostics. International Journal of Neutrosophic Science, 23(3), pp.08-8.

    [8]     R. Saarumathi, W. Ritha. (2024). A Legitimate Productive Repertoire Replica Betwixt Envirotech Outlay Towards Fragile Commodities Using Trapezoidal Neutrosophic Fuzzy Number. International Journal of Neutrosophic Science, 24 ( 1 ), 104-118

    [9]     Abobala, M., 2020. n-Cyclic Refined Neutrosophic Algebraic Systems Of Sub-Indeterminacies, An Application To Rings and Modules. International Journal of Neutrosophic Science, 12, pp.81-95.

    [10]   Abobala, M,. "Classical Homomorphisms Between Refined Neutrosophic Rings and Neutrosophic Rings", International Journal of Neutrosophic Science, Vol. 5, pp. 72-75, 2020.

    [11]   Muslim, M.A., Dasril, Y., Javed, H., Abror, W.F., Pertiwi, D.A.A. and Mustaqim, T., 2024. An Ensemble Stacking Algorithm to Improve Model Accuracy in Bankruptcy Prediction. Journal of Data Science and Intelligent Systems, 2(2), pp.79-86.

    [12]   Jabeur, S.B. and Serret, V., 2023. Bankruptcy prediction using fuzzy convolutional neural networks. Research in International Business and Finance, 64, p.101844.

    [13]   Chandok, G.A., Rexy, V., Basha, H.A. and Selvi, H., 2024. Enhancing Bankruptcy Prediction with White Shark Optimizer and Deep Learning: A Hybrid Approach for Accurate Financial Risk Assessment. International Journal of Intelligent Engineering & Systems, 17(1).

    [14]   Zhu, Y., Hu, Y., Liu, Q., Liu, H., Ma, C. and Yin, J., 2023. A hybrid approach for predicting corporate financial risk: Integrating SMOTE-ENN and NG Boost. IEEE Access.

    [15]   Xiao, J., Wen, Z., Jiang, X., Yu, L. and Wang, S., 2024. Three-stage research framework to assess and predict the financial risk of SMEs based on hybrid method. Decision Support Systems, 177, p.114090.

    [16]   Wang, Y., Wang, M., Pan, Y. and Chen, J., 2023. Joint loan risk prediction based on deep learning‐optimized stacking model. Engineering Reports, p.e12748.

    [17]   Karmakar, R., Chatterjee, S., Datta, D. and Chakraborty, D., 2023. Application of harmony search algorithm in optimizing autoregressive integrated moving average: A study on a data set of Coronavirus Disease 2019. Systems and Soft Computing, p.200067.

    [18]   Mafarja, M., Thaher, T., Al-Betar, M.A., Too, J., Awadallah, M.A., Abu Doush, I. and Turabieh, H., 2023. Classification framework for faulty-software using enhanced exploratory whale optimizer-based feature selection scheme and random forest ensemble learning. Applied Intelligence, pp.1-43.

    [19]   Palanikumar, M., Arulmozhi, K., Sundareswari, K. and Iampan, A., New type of Diophantine neutrosophic aggregation operators and its extension.

    [20]   Shetty, S., Musa, M. and Brédart, X., 2022. Bankruptcy prediction using machine learning techniques. Journal of Risk and Financial Management, 15(1), p.35

    Cite This Article As :
    Alhebri, Adeeb. , Farah, Gubarah. , Alsayegh, Abdulkarim. , Hussien, Radwan. , Al-Matari, Mohammed. Bankruptcy Prediction using Diophantine Neutrosophic Number for Enterprise Resource Planning on Value of Accounting Information. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 21-33. DOI: https://doi.org/10.54216/IJNS.240302
    Alhebri, A. Farah, G. Alsayegh, A. Hussien, R. Al-Matari, M. (2024). Bankruptcy Prediction using Diophantine Neutrosophic Number for Enterprise Resource Planning on Value of Accounting Information. International Journal of Neutrosophic Science, (), 21-33. DOI: https://doi.org/10.54216/IJNS.240302
    Alhebri, Adeeb. Farah, Gubarah. Alsayegh, Abdulkarim. Hussien, Radwan. Al-Matari, Mohammed. Bankruptcy Prediction using Diophantine Neutrosophic Number for Enterprise Resource Planning on Value of Accounting Information. International Journal of Neutrosophic Science , no. (2024): 21-33. DOI: https://doi.org/10.54216/IJNS.240302
    Alhebri, A. , Farah, G. , Alsayegh, A. , Hussien, R. , Al-Matari, M. (2024) . Bankruptcy Prediction using Diophantine Neutrosophic Number for Enterprise Resource Planning on Value of Accounting Information. International Journal of Neutrosophic Science , () , 21-33 . DOI: https://doi.org/10.54216/IJNS.240302
    Alhebri A. , Farah G. , Alsayegh A. , Hussien R. , Al-Matari M. [2024]. Bankruptcy Prediction using Diophantine Neutrosophic Number for Enterprise Resource Planning on Value of Accounting Information. International Journal of Neutrosophic Science. (): 21-33. DOI: https://doi.org/10.54216/IJNS.240302
    Alhebri, A. Farah, G. Alsayegh, A. Hussien, R. Al-Matari, M. "Bankruptcy Prediction using Diophantine Neutrosophic Number for Enterprise Resource Planning on Value of Accounting Information," International Journal of Neutrosophic Science, vol. , no. , pp. 21-33, 2024. DOI: https://doi.org/10.54216/IJNS.240302