Volume 24 , Issue 2 , PP: 120-130, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
Fuad S. Al-Duais 1 , Walid Aydi 2
Doi: https://doi.org/10.54216/IJNS.240211
This paper introduces a new statistical distribution called the Neutrosophic Extended Rayleigh Distribution (NERD), which is specifically developed to handle uncertainty commonly found in industrial applications. We conduct a comprehensive examination of the statistical characteristics of NERD, including important measures such as the quantile function, moments, moment generating function, mean deviation, skewness, kurtosis, reliability measures, uncertainty measures, distributions of order statistics, and L-moments. Parameter estimation is conducted by maximum-likelihood estimation within a neutrosophic framework, guaranteeing resilient inference in practical situations. Through the application of NERD to actual industrial datasets, we evaluate its adaptability and efficiency in simulating industrial processes. A real case study of Al-Kharj region demonstrates the higher performance of NERD. This research highlights the capacity of NERD to greatly improve productivity and efficiency in several industrial sectors.
Rayleigh distribution , neutrosophic probability , neutrosophic distribution , solar industry , renewable energy , Al-Kharj
[1] P. A. Rivera, I. Barranco-Chamorro, D. I. Gallardo, and H. W. Gómez, Scale mixture of Rayleigh distribution, Mathematics, vol. 8, no. 10, 2020, doi: 10.3390/math8101842.
[2] M. Kilai, G. A. Waititu, W. A. Kibira, M. M. A. El-Raouf, and T. A. Abushal, A new versatile modification of the Rayleigh distribution for modeling COVID-19 mortality rates, Results Phys, vol. 35, 2022, doi: 10.1016/j.rinp.2022.105260.
[3] H. M. Almongy, E. M. Almetwally, H. M. Aljohani, A. S. Alghamdi, and E. H. Hafez, A new extended rayleigh distribution with applications of COVID-19 data, Results Phys, vol. 23, 2021, doi: 10.1016/j.rinp.2021.104012.
[4] A. Shafqat, Z. Huang, and M. Aslam, Design of X-bar control chart based on Inverse Rayleigh Distribution under repetitive group sampling,” Ain Shams Engineering Journal, vol. 12, no. 1, 2021, doi: 10.1016/j.asej.2020.06.001.
[5] Z. Shen, A. Alrumayh, Z. Ahmad, R. Abu-Shanab, M. Al - Mutairi, and R. Aldallal, A new generalized rayleigh distribution with analysis to big data of an online community, Alexandria Engineering Journal, vol. 61, no. 12, 2022, doi: 10.1016/j.aej.2022.05.010.
[6] M. F. Zambak, C. I. Cahyadi, J. Helmi, T. M. Sofie, and Suwarno, Evaluation and Analysis of Wind Speed with the Weibull and Rayleigh Distribution Models for Energy Potential Using Three Models, International Journal of Energy Economics and Policy, vol. 13, no. 2, 2023, doi: 10.32479/ijeep.12775.
[7] S. C. Liebenberg and J. S. Allison, A Review of Goodness-of-Fit Tests for the Rayleigh Distribution, Austrian Journal of Statistics, vol. 52, no. 1, 2023, doi: 10.17713/ajs.v52i1.1322.
[8] I. E. Okorie, A. C. Akpanta, J. Ohakwe, D. C. Chikezie, and C. U. Onyemachi, On the Rayleigh-geometric distribution with applications, Heliyon, vol. 5, no. 8, 2019, doi: 10.1016/j.heliyon.2019.e02200.
[9] D. Kundu and M. Z. Raqab, Generalized Rayleigh distribution: different methods of estimations, Comput Stat Data Anal, vol. 49, no. 1, pp. 187–200, 2005, doi: 10.1016/J.CSDA.2004.05.008.
[10] S. Dey, T. Dey, and D. Kundu, Two-Parameter Rayleigh Distribution: Different Methods of Estimation, American Journal of Mathematical and Management Sciences, vol. 33, no. 1, pp. 55–74, Jan. 2014, doi: 10.1080/01966324.2013.878676.
[11] S. Lalitha and A. Mishra, Modified maximum likelihood estimation for rayleigh distribution, Commun Stat Theory Methods, vol. 25, no. 2, pp. 389–401, 1996, doi: 10.1080/03610929608831702.
[12] D. J. Best, J. C. W. Rayner, and O. Thas, Easily applied tests of fit for the Rayleigh distribution, Sankhya B, vol. 72, no. 2, 2010, doi: 10.1007/s13571-011-0011-2.
[13] S. M. A. Jahanshahi, A. Habibirad, and V. Fakoor, Some new goodness-of-fit tests for Rayleigh distribution, Pakistan Journal of Statistics and Operation Research, vol. 16, no. 2, 2020, doi: 10.18187/PJSOR.V16I2.3087.
[14] F. Alduais, Z. Khan, EWMA Control Chart for Rayleigh Process With Engineering Applications IEEE Access, vol. 11, pp. 10196-10206, 2023, doi: 10.1109/ACCESS.2023.3240660
[15] W. Q. Duan, Z. Khan, M. Gulistan, and A. Khurshid, Neutrosophic Exponential Distribution: Modeling and Applications for Complex Data Analysis, Complexity, vol. 2021, 2021, doi: 10.1155/2021/5970613.
[16] W. Q. Duan, Z. Khan, M. Gulistan, and A. Khurshid, Neutrosophic Exponential Distribution: Modeling and Applications for Complex Data Analysis, Complexity, vol. 2021, 2021, doi: 10.1155/2021/5970613.
[17] W.-Q. Duan, Z. Khan, M. Gulistan, and A. Khurshid, Neutrosophic Exponential Distribution: Modeling and Applications for Complex Data Analysis, Complexity, vol. 2021, pp. 1–8, 2021, doi: 10.1155/2021/5970613.
[18] A. M. M. Ibrahim and Z. Khan, Neutrosophic Laplace Distribution with Properties and Applications in Decision Making, International Journal of Neutrosophic Science, vol. 23, no. 1, 2024, doi: 10.54216/IJNS.230106.
[19] F. S. Alduais, Z. Khan, and M. Waseem, Neutrosophic Control Chart for Rayleigh Quality with Applications To Wind Speed Data, International Journal of Neutrosophic Science, vol. 23, no. 1, 2024, doi: 10.54216/IJNS.230105.
[20] H. Y. A. Shihabeldeen and Z. Khan, Neutrosophic Structure of the Log-logistic Model with Applications to Medical Data, International Journal of Neutrosophic Science, vol. 23, no. 1, 2024, doi: 10.54216/IJNS.230107.
[21] F. Smarandache, Introduction to Neutrosophic Statistics, Sitech & Education Publishing, Craiova, 2014.
[22] Rafif Alhabib et al, “some neutrosophic probability distributions,” Neutrosophic sets and systems, vol. 22, pp.30-38, 2018.
[23] S. Broumi and F. Smarandache, “Several similarity measures of neutrosophic sets, Infinite Study, vol. 410, 2013.
[24] S. Broumi and F. Smarandache, Correlation coefficient of interval neutrosophic set,” in Applied Mechanics and Materials, vol. 436, pp.11-7, 2013. doi: 10.4028/www.scientific.net/AMM.436.511.
[25] S. Broumi, F. Smarandache, M. Talea, and A. Bakali, “Single valued neutrosophic graphs: Degree, order and size,” in 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016, 2016. doi: 10.1109/FUZZ-IEEE.2016.7738000.
[26] S. Das, B. Shil, R. Das, H. E. Khalid, and A. A. Salama, Pentapartitioned Neutrosophic Probability Distributions, Neutrosophic Sets and Systems, vol. 49, 2022.
[27] Z. Khan, M. Gulistan, N. Kausar, and C. Park, “Neutrosophic Rayleigh Model with Some Basic Characteristics and Engineering Applications,” IEEE Access, vol. 9, pp. 71277–71283, 2021, doi: 10.1109/ACCESS.2021.3078150.
[28] F. Smarandache and B. Said, Neutrosophic Theories in Communication, Management and Information Technology. Nova Science Publishers, 2020