International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 23 , Issue 3 , PP: 318-328, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Type-II q-rung neutrosophic interval valued soft sets

M. Palanikumar 1 , G. Manikandan 2 , T. T. Raman 3 , K. Arulmozhi 4 , Aiyared Iampan 5

  • 1 Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai-602105, India - (palanimaths86@gmail.com)
  • 2 Department of CDC, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203,Tamilnadu, India - (manikang6@srmist.edu.in)
  • 3 Department of Mathematics, St. Joseph’s Institute of Technology, OMR, Chennai-600119, India - (ramanstat@gmail.com)
  • 4 Department of Mathematics, Bharath Institute of Higher Education and Research, Chennai-600073, India - (arulmozhiems@gmail.com)
  • 5 Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, 19 Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand - (aj.iampan@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.230326

    Received: July 13, 2023 Revised: November 29, 2023 Accepted: February 25, 2024
    Abstract

    In this study, the theory of the Type-II q-rung neutrosophic interval valued soft set (Type-II q-rung NIVS) is introduced. We also define a few operations based on the Type-II q-rung NIVS set. Type-II q-rung NIVS sets are formed by extending neutrosophic interval valued soft (NIVS) sets and q-rung fuzzy soft sets. Type-II q-rung NIVS sets and their similarity measures. An illustrative example illustrates how they can be used to successfully address uncertainty-related problems.

    Keywords :

    Type-II q-rung NIVS set , NIVS set , decision making problem.

    References

    [1] L. A. Zadeh, Fuzzy sets, Information and control 8(3),(1965), 338-353.

    [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20(1), (1986), 87-96.

    [3] R.R. Yager, Pythagorean membership grades in multi criteria decision making, IEEE Trans. Fuzzy Systems, 22, (2014), 958-965

    [4] Bui Cong Cuong, Picture fuzzy sets, Journal of Computer Science and Cybernetics, 30(4), (2014), 409- 420.

    [5] B.C. Cuong and V. Kreinovich, Picture fuzzy sets a new concept for computational intelligence problems, in Proceedings of 2013 Third World Congress on Information and Communication Technologies (WICT 2013), IEEE, (2013), 1-6.

    [6] F. Smarandache, A unifying field in logics neutrosophy neutrosophic probability, set and logic, Rehoboth American Research Press (1999).

    [7] R.Jansi, K.Mohana and F. Smarandache, Correlation measure for Pythagorean neutrosophic sets with T and F as dependent neutrosophic components, Neutrosophic Sets and Systems, 30,(2019), 202-212.

    [8] A Iampan, S Broumi, G Balaji, Generalization of neutrosophic interval-valued soft sets with different aggregating operators using multi-criteria group decision-making, International Journal of Neutrosophic Science 22 (1), 114-14 4 2023.

    [9] K Arulmozhi, C Jana, M Pal, Multiple attribute decision-making Pythagorean vague normal operators and their applications for the medical robots process on surgical system, Computational and Applied Mathematics 42 (6), 287 4 2023.

    [10] N Kausar, H Garg, M Palanikumar, A Iampan, S Kadry, M Sharaf, Medical robotic engineering selection based on square root neutrosophic normal interval-valued sets and their aggregated operators, AIMS Mathematics 8 (8), 17402-17432 4 2023.

    [11] G Shanmugam, K Arulmozhi, A Iampan, S Broumi, Agriculture Production Decision Making using Generalized g-Rung Neutrosophic Soft Set Method, International Journal of Neutrosophic Science 19 (1), 166-176.

    [12] D. Molodtsov, Soft set theory first results, Computers and Mathematics with Applications, 37, (1999), 19-31.

    [13] P.K. Maji, R. Biswas and A.R. Roy, Fuzzy soft set, Journal of Fuzzy Mathematics, 9(3), (2001), 589-602.

    [14] P.K. Maji, R. Biswas and A.R. Roy, On intuitionistic fuzzy soft set, Journal of Fuzzy Mathematics, 9(3), (2001), 677-692.

    [15] Yong Yang, Chencheng Liang, Shiwei Ji and Tingting Liu, Adjustable soft discernibility matrix based on picture fuzzy soft sets and its applications in decision making, Journal of Intelligent and Fuzzy Systems, 29, (2015), 1711- 1722.

    [16] X.D. Peng, Y. Yang, J.P. Song, Pythagorean fuzzy soft set and its application, Computer Engineering, 41(7), (2015), 224-229.

    [17] P Majumdar, S.K. Samantab, Generalized fuzzy soft sets, Computers and Mathematics with Applications, 59, (2010), 1425-1432.

    [18] Shawkat Alkhazaleh and Abdul Razak Salleh, Generalized interval valued fuzzy soft set, Journal of Applied Mathematics, (2012), 1-18.

    [19] S. Alkhazaleh, A.R. Salleh, and N. Hassan, possibility fuzzy soft set, Advances in Decision Sciences, (2011), 1-18.

    [20] Faruk Karaaslan, Possibility neutrosophic soft sets and PNS-decision making method, Applied Soft Computing 54, (2017) 403-414.

    [21] Ahmed B. AL-Nafee, Said Broumi, Luay A. Al Swidi, n-valued refined neutrosophic crisp sets. International Journal of Neutrosophic Science, 17(2), 2021, 87-95.

    [22] Souhail Dhouib, Said Broumi, M. Lathamaheswari, Single valued trapezoidal neutrosophic travelling salesman problem with novel greedy method, the dhouib matrix TSP1, International Journal of Neutrosophic Science, 17(2), 2021, 144-157.

    [23] M. Lathamaheswari, Said Broumi, Florentin Smarandache, S. Sudha, Neutrosophic perspective of neutrosophic probability distributions and its application, International Journal of Neutrosophic Science, 17(2), 2021, 96-109.

    [24] SGQuek, H Garg, G Selvachandran, K Arulmozhi,VIKOR and TOPSIS framework with a truthful-distance measure for the (t, s)-regulated interval-valued neutrosophic soft set, Soft Computing, 1-27, 2023.

    [25] M Palanikumar, K Arulmozhi, A Iampan, Multi criteria group decision making based on VIKOR and TOPSIS methods for Fermatean fuzzy soft with aggregation operators, ICICExpress Letters 16 (10), 1129–1138, 2022.

    [26] M Palanikumar, K Arulmozhi, C. Jana, Multiple attribute decision-making approach for Pythagorean neutrosophic normal interval-valued fuzzy aggregation operators, Comput. Appl. Math., 41(90), (2022), 1-22.

    Cite This Article As :
    Palanikumar, M.. , Manikandan, G.. , T., T.. , Arulmozhi, K.. , Iampan, Aiyared. Type-II q-rung neutrosophic interval valued soft sets. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 318-328. DOI: https://doi.org/10.54216/IJNS.230326
    Palanikumar, M. Manikandan, G. T., T. Arulmozhi, K. Iampan, A. (2024). Type-II q-rung neutrosophic interval valued soft sets. International Journal of Neutrosophic Science, (), 318-328. DOI: https://doi.org/10.54216/IJNS.230326
    Palanikumar, M.. Manikandan, G.. T., T.. Arulmozhi, K.. Iampan, Aiyared. Type-II q-rung neutrosophic interval valued soft sets. International Journal of Neutrosophic Science , no. (2024): 318-328. DOI: https://doi.org/10.54216/IJNS.230326
    Palanikumar, M. , Manikandan, G. , T., T. , Arulmozhi, K. , Iampan, A. (2024) . Type-II q-rung neutrosophic interval valued soft sets. International Journal of Neutrosophic Science , () , 318-328 . DOI: https://doi.org/10.54216/IJNS.230326
    Palanikumar M. , Manikandan G. , T. T. , Arulmozhi K. , Iampan A. [2024]. Type-II q-rung neutrosophic interval valued soft sets. International Journal of Neutrosophic Science. (): 318-328. DOI: https://doi.org/10.54216/IJNS.230326
    Palanikumar, M. Manikandan, G. T., T. Arulmozhi, K. Iampan, A. "Type-II q-rung neutrosophic interval valued soft sets," International Journal of Neutrosophic Science, vol. , no. , pp. 318-328, 2024. DOI: https://doi.org/10.54216/IJNS.230326