Volume 23 , Issue 3 , PP: 304-317, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
V. Rajam 1 , N. Rajesh 2 , Aiyared Iampan 3 *
Doi: https://doi.org/10.54216/IJNS.230325
Characterizations of (∈,∈)-neutrosophic ideals and (q,∈ ∨q)-neutrosophic ideals are provided. Given special sets, so-called neutrosophic ∈-subsets, neutrosophic q-subsets, and neutrosophic (q,∈ ∨q)-subsets, conditions for the neutrosophic ∈-subsets, neutrosophic q-subsets, and neutrosophic (q,∈ ∨q)-subsets to be ideals are discussed.
neutrosophic set , (&isin , ,&isin , )-neutrosophic ideal , (&isin , , q)-neutrosophic ideal , (q,&isin , )-neutrosophic ideal , (q,&isin , )-neutrosophic ideal , (q,&isin , &or , q)-neutrosophic ideal , (q,&isin , &or , q)-neutrosophic ideal.
[1] Y. Huang, BCI-algebra, Science Press, Beijing, China, 2006.
[2] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top., 5(1), (2017), 35-54.
[3] Y. B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Ann. Fuzzy Math. Inform., 14(1), (2017), 75-86.
[4] Y. B. Jun, B. Brundha, N. Rajesh, and R. K. Bandaru, (3, 2)-Fuzzy UP (BCC)-subalgebras and (3, 2)- fuzzy UP (BCC)-filters, J. Mahani Math. Res. Cent., 11(3), (2022), 1-14.
[5] Y. Komori, The class of BCC-algebras is not a variety, Math. Japon., 29(3), (1984), 391-394.
[6] G. Muhiuddin, H. Bordbar, F. Smarandache, and Y. B. Jun, Further results on (∈,∈)-neutrosophic subalgebras and ideals in BCK/BCI-algebras, Neutrosophic Sets Syst., 20, (2018), 36-43.
[7] G. Muhiuddin and Y. B. Jun, Further results of neutrosophic subalgebras in BCK/BCI-algebras based on neutrosophic points, TWMS J. App. Eng. Math., 10(1), (2020), 232-240.
[8] M. A. Ozturk and Y. B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, J. Int. Math. Virtual Inst., 8(1), (2018), 1-17.
[9] A. B. Saeid and Y. B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Ann. Fuzzy Math. Inform., 14(2), (2017), 87-97.
[10] F. Smarandache, A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability (fourth edition), Rehoboth American Research Press, 2008.
[11] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., 24(3), (2005), 287-297.
[12] L. A. Zadeh, From circuit theory to system theory, Proc. Inst. Radio Eng., 50, (1962), 856-865.
[13] L. A. Zadeh, Fuzzy sets, Inf. Control, 8(3), (1965), 338-353.