Volume 23 , Issue 1 , PP: 341-349, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
K. Rajesh 1 * , Sharmila Rathod 2 , Jyoti Kundale 3 , Nilesh Rathod 4 , M. Clement Joe Anand 5 , Utpal Saikia 6 , Mohit Tiwari 7 , Nivetha Martin 8
Doi: https://doi.org/10.54216/IJNS.230129
In this research, we introduce the Interval Valued Temporal Neutrosophic Fuzzy Sets (IVTNFS) and some of its basic operations. Also, examine some of their properties. The Neutrosophic Fuzzy Sets of membership and non-membership values are not always possible up to our satisfaction, but the IVTNFS part has a more important role here, because the time movement with an interval in NFS gave the best solution to making a decision, deciding their careers in our real-life situation.
Intuitionistic Fuzzy Sets , Temporal Intuitionistic Fuzzy Sets , Neutrosophic Fuzzy Sets , Interval Valued Neutrosophic Fuzzy Sets and Interval Valued Intuitionistic Fuzzy Sets.
[1] Atanassov K. T., “Intuitionistic fuzzy sets”, Fuzzy Sets and Systems, vol.20, pp. 87 – 96, 1986.
[2] Broumi, S., Mohanaselvi, S., Witczak, T., Talea, M., Bakali, A., & Smarandache, F. (2023). Complex fermatean neutrosophic graph and application to decision making. Decision Making: Applications in Management and Engineering, 6(1), 474-501.
[3] Broumi, S., Raut, P. K., & Behera, S. P. (2023). Solving shortest path problems using an ant colony algorithm with triangular neutrosophic arc weights. International Journal of Neutrosophic Science, 20(4), 128-28.
[4] Atanassov K. T. and Gargov G., “Interval – Valued Fuzzy Sets”, Fuzzy Sets and Systems, vol. 31, pp. 343 – 349, 1989.
[5] Atanassov K. T., “Temporal intuitionistic fuzzy sets”, Comptes Rendusdel’ Academie Bulgare, vol. 7, pp. 5 – 7, 1991.
[6] Anand M.C.J, Janani Bharatraj, “Interval-Valued Neutrosophic Numbers with WASPAS”. In: Kahraman, C., Otay, İ. (eds) Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Studies in Fuzziness and Soft Computing, Springer, Cham, pp.435-453, 2019.
[7] De Supriya Kumar, Ranjit Biswas and Akhil Ranjan Roy, “Some operations on intuitionistic fuzzy sets”, Fuzzy Sets and Systems, vol.114, no.3, pp. 477 – 484, 2000.
[8] Bharatraj J., M. Clement Joe Anand, “Power harmonic weighted aggregation operator on single-valued trapezoidal neutrosophic numbers and interval-valued neutrosophic sets”. In: Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Springer International Publishing, Cham, pp. 45–62, 2019.
[9] Manshath. A, Kungumaraj.E, Lathanayagam. E, Anand, M. Clement. J, Nivetha Martin, Elangovan Muniyandy, S. Indrakumar. (2024). Neutrosophic Integrals by Reduction Formula and Partial Fraction Methods for Indefinite Integrals. International Journal of Neutrosophic Science, 23 (1), 08-16.
[10] Sudha. S, Martin. N , Anand. M. C. J., Palanimani. P.G., Thirunamakkani.T., Ranjitha. B., MACBETH – MAIRCA Plithogenic Decision Making on Feasible Strategies of Extended Producer’s Responsibility towards Environmental Sustainability, International Journal of Neutrosophic Science, Vol.22 (2), 2023, 114 – 130.
[11] Sinem Yilmaz and Gokhan Cuvalcioglu, “On level operators for temporal Intuitionistic fuzzy sets”, Notes on Intuitionistic Fuzzy Sets, vol. 20, no. 2, pp. 6 – 15, 2014.
[12] Smarandache F, Stanujkic D, Zavadskas EK, Brauers WKM and Karabasevic DA, “Neutrosophic extension of the MULTI-MOORA method”. Informatica, vol. 28(1), pp. 181–192, 2017.
[13] Smarandache F, Zhang YQ, Sunderraman R and Wang H, “Single valued neutrosophic sets. Multispace Multistruct”, vol. 4, pp.410-413, 2010