International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 23 , Issue 1 , PP: 17-26, 2024 | Cite this article as | XML | PDF | Full Length Article

δ-separation Axioms on Fuzzy Hypersoft Topological Spaces

P. Surendra 1 * , A. Vadivel 2 , K. Chitirakala 3

  • 1 Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India. - (surendrasarathi47@gmail.com)
  • 2 Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India; Department of Mathematics, Arignar Anna Government Arts College, Namakkal - 637 002, India - (chitrakalalaksana@gmail.com)
  • 3 Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India; Department of Mathematics, M.Kumarasamy College of Engineering, Karur - 639 113, India. - (avmaths@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.230102

    Received: May 12, 2023 Revised: August 18, 2023 Accepted: November 06, 2023
    Abstract

    In this article, the concept of fuzzy hypersoft δ (resp. semi, pre, δ semi & δ pre)-separation axioms in fuzzy hypersoft topological spaces are introduced by developing fuzzy hypersoft δ (resp. semi, pre, δ semi & δ pre)-neighbourhood with respect to fuzzy hypersoft points. Also, the properties and relations between fuzzy hypersoft δ (resp. semi, pre, δ semi & δ pre)- Ti- spaces (i = 0, 1, 2, 3, 4) are discussed.

    Keywords :

    FHyS &delta , (resp. semi, pre , &delta , semi & , &delta , pre)-neighbourhood , FHyS &delta , (resp. semi, pre, &delta , semi & , &delta , pre)-separation axioms , FHyS &delta , (resp. semi, pre, &delta , semi & , &delta , pre)- Ti- space (i = 0, 1, 2, 3, 4).

    References

    [1] A. Acikgoz and F. Esenbel, Neutrosophic soft δ-topology and neutrosophic soft compactness, AIP Conference Proceedings 2183, 030002, (2019).

    [2] A. Acikgoz and F. Esenbel, An approach to pre-separation axioms in neutrosophic soft topological spaces, Commun.Fac.Sci.Univ.Ank.ser. AI Math. Stat., 69 (2), (2020), 1389-1404.

    [3] M. Abbas, G. Murtaza and F. Smarandache, Basic operations on hypersoft sets and hypersoft point, Neutrosophic Sets and Systems, 35, (2020), 407-421.

    [4] D. Ajay and J. Joseline Charisma, Neutrosophic hypersoft topological spaces, Neutrosophic Sets and Systems, 40, (2021), 178-194.

    [5] D. Ajay, J. Joseline Charisma, N. Boonsatit, P. Hammachukiattikul and G. Rajchakit Neutrosophic semiopen hypersoft sets with an application to MAGDM under the COVID-19 scenario, Hindawi Journal of Mathematics, 2021, (2021), 1-16.

    [6] C. G. Aras, T. Y. Ozturk and S. Bayramov, Separation axioms on neutrosophic soft topological spaces, Turkish Journal of Mathematics, 43 (2019), 498-510.

    [7] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.

    [8] C. Gunduz, TY. Ozturk, and S. Bayramov, Separation axioms on neutrosophic soft topological spaces, Turkish Journal of Mathematics, 43 (1), (2019), 498 - 510.

    [9] A. M. Khattak, N. Hanif, F. Nadeem, M. Zamir, C. Park, G. Nordo and S. Jabeen, Soft b-separation axioms in neutrosophic soft topological structures, Annals of Fuzzy Mathematics and Informatics, 18 (1) (2019), 93-105.

    [10] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37, (1999), 19-31.

    [11] T. Y. Ozturk, Separation axioms on fuzzy hypersoft topological spaces, Journal of Interdisciplinary Mathematics, 43 (1), (2022), 1 - 11.

    [12] P. Revathi, K. Chitirakala and A. Vadivel, Soft e-Separation Axioms in Neutrosophic soft Topological Spaces, Journal of Physics: Conference Series, 2070 (012028), (2021).

    [13] S. Saha, Fuzzy δ-continuous mappings, Journal of Mathematical Analysis and Applications, 126 (1987), 130-142.

    [14] M. Saqlain, S. Moin, M.N. Jafar, M. Saeed and F. Smarandache, Aggregate operators of neutrosophic hypersoft set, Neutrosophic Sets and Systems, 32 (1), (2020), 294-306.

    [15] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl., 61, (2011), 1786-1799.

    [16] F. Smarandache, A Unifying field in logics: neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic probability, American Research Press, Rehoboth, NM, (1999).

    [17] F. Smarandache, Neutrosophic set: A generalization of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24 (2005), 287-297.

    [18] F. Smarandache, Extension of soft set to hypersoft set, and then to plithogenic hypersoft set , Neutrosophic Sets and Systems, 22, (2018), 168-170.

    [19] A. Vadivel, M. Seenivasan and C. John Sundar, An introduction to δ-open sets in a neutrosophic topological spaces, Journal of Physics: Conference series, 1724 (2021), 012011.

    [20] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (3), (1965), 338–353.

    Cite This Article As :
    Surendra, P.. , Vadivel, A.. , Chitirakala, K.. δ-separation Axioms on Fuzzy Hypersoft Topological Spaces. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 17-26. DOI: https://doi.org/10.54216/IJNS.230102
    Surendra, P. Vadivel, A. Chitirakala, K. (2024). δ-separation Axioms on Fuzzy Hypersoft Topological Spaces. International Journal of Neutrosophic Science, (), 17-26. DOI: https://doi.org/10.54216/IJNS.230102
    Surendra, P.. Vadivel, A.. Chitirakala, K.. δ-separation Axioms on Fuzzy Hypersoft Topological Spaces. International Journal of Neutrosophic Science , no. (2024): 17-26. DOI: https://doi.org/10.54216/IJNS.230102
    Surendra, P. , Vadivel, A. , Chitirakala, K. (2024) . δ-separation Axioms on Fuzzy Hypersoft Topological Spaces. International Journal of Neutrosophic Science , () , 17-26 . DOI: https://doi.org/10.54216/IJNS.230102
    Surendra P. , Vadivel A. , Chitirakala K. [2024]. δ-separation Axioms on Fuzzy Hypersoft Topological Spaces. International Journal of Neutrosophic Science. (): 17-26. DOI: https://doi.org/10.54216/IJNS.230102
    Surendra, P. Vadivel, A. Chitirakala, K. "δ-separation Axioms on Fuzzy Hypersoft Topological Spaces," International Journal of Neutrosophic Science, vol. , no. , pp. 17-26, 2024. DOI: https://doi.org/10.54216/IJNS.230102