International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 22 , Issue 3 , PP: 36-52, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

On Radical of Neutrosophic Primary Submodule

M. Vasuki 1 * , P. Senthil Kumar 2 , Said Broumi 3 , N. Rajesh 4

  • 1 Department of Mathematics, Rajah Serfoji Government College (affiliated to Bharathidasan University), Thanjavur-613005, Tamilnadu, India - (vasuki.scas@gmail.com)
  • 2 Department of Mathematics, Rajah Serfoji Government College (affiliated to Bharathidasan University), Thanjavur-613005, Tamilnadu, India - (senthilscas@yahoo.com)
  • 3 Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan II, Casablanca, Morocco - (s.broumi@flbenmsik.ma)
  • 4 Department of Mathematics, Rajah Serfoji Government College (affiliated to Bharathidasan University), Thanjavur-613005, Tamilnadu, India - (nrajesh topology@yahoo.co.in)
  • Doi: https://doi.org/10.54216/IJNS.220303

    Received: April 26, 2023 Revised: July 08, 2023 Accepted: October 04, 2023
    Abstract

    In this paper, we introduce and study the concept of neutrosophic submodules and neutrosophic primary submodule with the help of the definition of a radical submodule, and we also study the properties of these submodules. Furthermore, homomorphic image and preimage of neutrosophic primary submodule are investigated.

    Keywords :

    neutrosophic submodules , radical submodule , neutrosophic primary submodule.

    References

    [1] J. M. Abulebda Lamis, Uniformly primal submodule over noncommutative ring, Journal of Mathematics, vol. 2020, Article ID 1593253, 4 pages, 2020.

    [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 197, 1986.

    [3] M. Behboodi and H. Koohy, Weakly prime modules, Vietnam Journal of Mathematics, 32 (2) (2004), 185-195.

    [4] B. Davvaz, W. A. Dudek, and Y. B. Jun, Intuitionistic fuzzy submodules, Information Sciences, 176 (3) (2006), 285-300.

    [5] R. Biswas, Intuitionistic fuzzy subgroups, Mathematical Forum, 10 (1989), 37-46.

    [6] J. Goswami and H. K. Saikia, On the spectrum of weakly prime submodule, Thai Journal of Mathematics, 19 (1) (2019), 51-58.

    [7] K. Hur, S.Y. Jang, and H.W. Kang, Intuitionistic fuzzy ideals of a ring, The Pure and Applied Mathematics, 12 (3) (2005), 193-209.

    [8] K. Hur, S.Y. Jang, and H.W. Kang, Intuitionistic fuzzy subgroupoids, International Journal of Fuzzy Logic and Intelligent Systems, 3 (1) (2003), 72-77.

    [9] A. Iampan, S. R. Vidhya and N. Rajesh, Polynomial ideals of a ring based on neutrosophic sets (under preparation).

    [10] D. S. Lee and C. H. Park, On intuitionistic fuzzy w-primary submodules, Honam Mathematical Journal, 29 (4) (2007), 631-640.

    [11] M. Mashinchi and M. M. Zahedi, On L-fuzzy primary submodules, Fuzzy Sets and Systems, 49 (2) (1992), 231-236.

    [12] C. V. Negoita and D. A. Ralescu, Applications of Fuzzy Sets to Systems Analysis, Springer, Berlin, Germany, 1975.

    [13] N. D. H. Nghiem, S. Baupradist, and R. Chinram, On nearly prime submodules of unitary modules, Journal of Mathematics, vol. 2018, pp. 1-4, 2018.

    [14] S. Rahman and H. K. Saikia, Some aspects of Atanassov’s intuitionistic fuzzy submodule, International Journal of Pure and Applied Mathematics, 77 (2012), 369-383.

    [15] A. Rosenfeld, Fuzzy groups, Journal of Mathematical Analysis and Applications, 35 (1971), 512–517.

    [16] P. Sharma, Translates of intuitionistic fuzzy subring, International Review of Fuzzy Mathematics, 6 (2011), 77-84.

    [17] P. K. Sharma and K. Gagandeep, Residual quotient and annihilator of intuitionistic fuzzy sets of ring and module, International Journal of Computer Science and Information Technology, 9 (2017), 1-15.

    [18] P. K. Sharma and G. Kaur, Intuitionistic fuzzy prime spectrum of a ring, International Journal of Fuzzy Systems, 9 (2017), 167–175.

    [19] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., 24(3) (2005), 287-297.

    [20] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (3) (1965), 338-353.

     

    Cite This Article As :
    Vasuki, M.. , Senthil, P.. , Broumi, Said. , Rajesh, N.. On Radical of Neutrosophic Primary Submodule. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 36-52. DOI: https://doi.org/10.54216/IJNS.220303
    Vasuki, M. Senthil, P. Broumi, S. Rajesh, N. (2023). On Radical of Neutrosophic Primary Submodule. International Journal of Neutrosophic Science, (), 36-52. DOI: https://doi.org/10.54216/IJNS.220303
    Vasuki, M.. Senthil, P.. Broumi, Said. Rajesh, N.. On Radical of Neutrosophic Primary Submodule. International Journal of Neutrosophic Science , no. (2023): 36-52. DOI: https://doi.org/10.54216/IJNS.220303
    Vasuki, M. , Senthil, P. , Broumi, S. , Rajesh, N. (2023) . On Radical of Neutrosophic Primary Submodule. International Journal of Neutrosophic Science , () , 36-52 . DOI: https://doi.org/10.54216/IJNS.220303
    Vasuki M. , Senthil P. , Broumi S. , Rajesh N. [2023]. On Radical of Neutrosophic Primary Submodule. International Journal of Neutrosophic Science. (): 36-52. DOI: https://doi.org/10.54216/IJNS.220303
    Vasuki, M. Senthil, P. Broumi, S. Rajesh, N. "On Radical of Neutrosophic Primary Submodule," International Journal of Neutrosophic Science, vol. , no. , pp. 36-52, 2023. DOI: https://doi.org/10.54216/IJNS.220303