International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 22 , Issue 2 , PP: 15-28, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Pre-separation Axioms in Neutrosophic Topological Spaces

Sudeep Dey 1 * , Gautam Chandra Ray 2

  • 1 Department of Mathematics, Science College, Kokrajhar, Assam, India ; Department of Mathematics, Central Institute of Technology, Kokrajhar, Assam, India - (sudeep.dey.1976@gmail.com)
  • 2 Department of Mathematics, Central Institute of Technology, Kokrajhar, Assam, India - (gautomofcit@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.220202

    Received: March 12, 2023 Revised: June 02, 2023 Accepted: September 02, 2023
    Abstract

    In this article, we first establish a few relationships among neutrosophic interior, neutrosophic closure, neutrosophic pre-open sets, and neutrosophic pre-closed sets in single-valued neutrosophic topological spaces. Thereafter, we defined neutrosophic pre-  space, neutrosophic pre-  space, and neutrosophic pre-  space based on single-valued neutrosophic topological spaces and studied a few properties and relationships among them. We try to establish some relationships between existing neutrosophic separation axioms and newly defined neutrosophic pre-separation axioms. Finally, we study some hereditary properties of pre-separation axioms. Apart from these, we also explore some results implementing neutrosophic pre-open function, neutrosophic pre-continuous function, neutrosophic pre-irresolute function and neutrosophic pre -function based on our defined definitions.

     

    Keywords :

    Neutrosophic subspace , Neutrosophic pre- space , Neutrosophic pre- space , Neutrosophic pre-   , space , Neutrosophic pre-open set , Neutrosophic pre-closed set , Neutrosophic pre-open function , Neutrosophic pre-continuous function , Neutrosophic pre-irresolute function , Neutrosophic pre -continuous function.   ,

    References

    [1] Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87-96.

    [2] Arokiarani, I.; Dhavaseelan, R.; Jafari, S.; Parimala, M. (2017). On Some New Notions and Functions in Neutrosophic Topological Space. Neutrosophic Sets and Systems, 16, 16-19.

    [3] Alblowi, S. A. and Salma, A. A.; Eisa, M. (2014). New concepts of neutrosophic sets. Int. J. of Math and Comp. Appl. Research, 4(1), 59-66.

    [4] Aҫikgӧz, A.and  Esenbel, F. (2020). An Approach to pre-separation axioms in neutrosophic soft topological spaces, Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat., 69(2), 1389-1404.

    [5] Aҫikgӧz, A. and Esenbel, F. (2021). A look on separation axioms in neutrosophic topological spaces. AIP Conference Proceedings, Turkey, 17-21 June, 2020, AIP Publishing, https://doi.org/10.1063/5.0042370.

    [6] Coker, D. (1997). An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88, 81-89.

    [7] Dey. S. and Ray, G. C. Covering properties in Neutrosophic Topological Spaces. Neutrosophic Sets and Systems, 51, 525-537.

    [8] Dey. S and Ray, G. C. (2023). Separation Axioms in Neutrosophic Topological Spaces. Neutrosophic Systems withApplications, 2, 38-54. DOI: https://doi.org/10.5281/zenodo.8195851

    [9] Dey. S. and Ray, G. C. (2023). Neutrosophic Pre-compactness. International Journal of Neutrosophic Science, 21(1), 105-120.

    [10] Karatas, S., and Kuru, C. (2016). Neutrosophic Topology. Neutrosophic Sets and Systems, 13(1), 90-95.

    [11] Rao, V. V. and Rao, Y. S. (2017). Neutrosophic Pre-open Sets and Pre-closed Sets in Neutrosophic Topology, International Journal of ChemTech Research, 10(10), 449-458.

    [12] Ray, G. C. and Dey, S. (2021). Neutrosophic point and its neighbourhood structure. Neutrosophic Sets and Systems, 43, 156-168.

    [13] Smarandache, F. (1999). A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM.

    [14] Smarandache, F. (2002). Neutrosophy and neutrosophic logic. First international conference on neutrosophy, Neutrosophic logic, set, probability, and statistics, University of New Mexico, Gallup, NM 87301, USA .

    [15] Smarandache,F. (2005). Neutrosophic set - a generalization of the intuitionistic fuzzy set. International Journal of Pure and Applied Mathematics, 24(3), 287-297.

    [16] Salama, A.A., and Alblowi, S. (2012). Neutrosophic set and Neutrosophic Topological Spaces. IOSR Journal of Mathematics, 3(4), 31-35.

    [17] Salama, A. A., Smarandache, F. and Kroumov, V. (2014). Closed sets and Neutrosophic Continuous Functions, Neutrosophic Sets and Systems, 4, 4-8.

    [18] Ṣenyurt, S., and Kaya, G. (2017). On Neutrosophic Continuity. Ordu University Journal of Science and Technology, 7(2), 330-339.

    [19] Sudha, V., Vadivel, A. and Tamilselvan, S.; (2021). Separation Axioms in Nnc Topological Spaces via Nnc e-open Sets, Journal of Physics: Conference Series 1724 012014, ICRTAMS 2020, India, 26-27 September, IOP Publishing, DOI:10.1088/1742-6596/1724/1/012014.

    [20] Suresh, R. and Palaniammal, S. (2020). NS (WG) separation axioms in Neutrosophic topological spaces. Journal of  Physics: Conference Series 1597 012048, International Conference on New Trends in Mathematical Modelling with Applications, India, 29-30 July 2019, IOP Publishing, doi:10.1088/1742-6596/1597/1/012048.

    [21] Wang, H. and Smarandache, F.; Zhang, Y.Q. ; Sunderraman, R. (2010). Single valued neutrosophic sets, Multispace Multistruct, 4, 410-413.

    [22] Zadeh, L. A. (1965). Fuzzy sets. Inform. and Control, 8, 338-353.

    Cite This Article As :
    Dey, Sudeep. , Chandra, Gautam. Pre-separation Axioms in Neutrosophic Topological Spaces. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 15-28. DOI: https://doi.org/10.54216/IJNS.220202
    Dey, S. Chandra, G. (2023). Pre-separation Axioms in Neutrosophic Topological Spaces. International Journal of Neutrosophic Science, (), 15-28. DOI: https://doi.org/10.54216/IJNS.220202
    Dey, Sudeep. Chandra, Gautam. Pre-separation Axioms in Neutrosophic Topological Spaces. International Journal of Neutrosophic Science , no. (2023): 15-28. DOI: https://doi.org/10.54216/IJNS.220202
    Dey, S. , Chandra, G. (2023) . Pre-separation Axioms in Neutrosophic Topological Spaces. International Journal of Neutrosophic Science , () , 15-28 . DOI: https://doi.org/10.54216/IJNS.220202
    Dey S. , Chandra G. [2023]. Pre-separation Axioms in Neutrosophic Topological Spaces. International Journal of Neutrosophic Science. (): 15-28. DOI: https://doi.org/10.54216/IJNS.220202
    Dey, S. Chandra, G. "Pre-separation Axioms in Neutrosophic Topological Spaces," International Journal of Neutrosophic Science, vol. , no. , pp. 15-28, 2023. DOI: https://doi.org/10.54216/IJNS.220202