International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 21 , Issue 3 , PP: 115-125, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Scrutinization of a Neutrosophic Fuzzy Erlangian Queuing Model Using a Parametric Programming Technique

P. Yasodai 1 * , W. Ritha 2

  • 1 Department of Mathematics, Holy Cross College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India - (yasodairajendran@gmail.com)
  • 2 Department of Mathematics, Holy Cross College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India - (ritha_prakash@yahoo.co.in)
  • Doi: https://doi.org/10.54216/IJNS.210311

    Received: February 15, 2023 Revised: May 25, 2023 Accepted: June 18, 2023
    Abstract

    This article examines an Erlangian queuing model in a neutrosophic fuzzy environment. The inter-arrival rates and service rates are trapezoidal neutrosophic fuzzy numbers integrated into the Erlangian queuing model. The membership functions of the performance metrics of the corresponding queuing model have been outlined using parametric programming techniques in accordance with the (σ, β, γ)- cuts and Zadeh's extension principle. The neutrosophic fuzzy queues are converted into a family of crisp queues using this principle. The applicability of the provided approach for various cutting possibilities is highlighted by concrete examples.

    Keywords :

    Fuzzy Sets , Membership Functions, Neutrosophic Fuzzy Erlangian Queuing Model , Trapezoidal Neutrosophic fuzzy number , Parametric Programming, (&sigma , , &beta , , &gamma , )-cuts, Zadeh&rsquo , s Extension Principle , Queue length , Waiting time.

    References

    [1] Atanassov, K. (1994). New operations defined over the Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 61(2): PP. 137-142.

    [2] Biswas, P., Pramanik, S., & Giri, B. C. (2018). Multi-attribute Group decision Making Based on Expected Value of Neutrosophic Trapezoidal Numbers. New Trends in Neutrosophic Theory and Applications, 2, PP. 105-124.

    [3] Broumi Said., Malayalan Lathamaheswari., Ruipu Tan., Deivanayagampillai Nagarajan., Talea Mohamed., Florentin Smarandache., and Assia Bakali. (2020). A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids. Neutrosophic Sets and Systems. 35(1): PP. 478-502.

    [4] Chen, S. P. (2005). Parametric non-linear programming approach to fuzzy queues with bulk Service. European Journal of Operational Research, 163(2), PP. 434 – 444.

    [5] Florentin Smarandache.(2018)., Plithogenic Set, an Extension of Crisp, Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Sets – Revisited. Neutrosophic Sets and Systems, vol. 21, PP. 153-166. https://doi.org/10.5281/zenodo.1408740.

    [6] Hong-yu Zhang., Jian-qiang Wang., & Xiao-hong Chen. (2014). Interval Neutrosophic sets and their application in multicriteria decision making problems. The scientific world journal. Hindawi Publishing Corporation, Article ID 645953.

    [7] H. M. Prade, “An Outline of Fuzzy or Possibilistic models for Queuing Systems”, Fuzzy Sets, Plenum Press (1980), PP. 147-153.

    [8] Josephine Vinnarasi, S., Ritha, W., & Rajavarni. (2018). Study on FM/FE2/1 Model With Hexagonal Fuzzy Number. International Journal of Management, IT & Engineering, 8(5), PP. 81- 88.

    [9] Kao, C., Li, C. C., & Chen, S. P. (1999). Parametric programming to the analysis of fuzzy queues. Fuzzy Sets and Systems, 107(1), PP. 93-100.

    [10] Smarandache, F. (1998). A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic. American Research Press, Rehoboth.

    [11] Smarandache, F. (2006). Neutrosophic set – a generalization of the intuitionistic fuzzy Set. IEEE international conference on granular computing. PP. 38-42.

    [12] Suresh, M., Arun Prakash. K., & Vengataasalam. S. (2021). Multi-criteria decision making based on ranking of neutrosophic trapezoidal fuzzy numbers, Granular Computing, 6, PP. 943-952. [13] Sahoo, D., Tripathy, A. K., & Pati, J. K. (2022). Study on multi-objective linear fractional programming problem involving pentagonal intuitionistic fuzzy number. Results in Control and Optimization, 6, PP. 1-15.

    [14] Ye, J. (2014). Single valued neutrosophic cross-entropy for multi-criteria decision Making problems. Applied Mathematical Modelling. 38(3): PP. 1170-1175. [15] Zhang, H. Y., Wang, J. Q., and Chen, X. H. (2014). Interval neutrosophic sets and their application in multi-criteria decision making problems. The Scientific World Journal, Doi:10.1155/2014/645953.

     

    Cite This Article As :
    Yasodai, P.. , Ritha, W.. Scrutinization of a Neutrosophic Fuzzy Erlangian Queuing Model Using a Parametric Programming Technique. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 115-125. DOI: https://doi.org/10.54216/IJNS.210311
    Yasodai, P. Ritha, W. (2023). Scrutinization of a Neutrosophic Fuzzy Erlangian Queuing Model Using a Parametric Programming Technique. International Journal of Neutrosophic Science, (), 115-125. DOI: https://doi.org/10.54216/IJNS.210311
    Yasodai, P.. Ritha, W.. Scrutinization of a Neutrosophic Fuzzy Erlangian Queuing Model Using a Parametric Programming Technique. International Journal of Neutrosophic Science , no. (2023): 115-125. DOI: https://doi.org/10.54216/IJNS.210311
    Yasodai, P. , Ritha, W. (2023) . Scrutinization of a Neutrosophic Fuzzy Erlangian Queuing Model Using a Parametric Programming Technique. International Journal of Neutrosophic Science , () , 115-125 . DOI: https://doi.org/10.54216/IJNS.210311
    Yasodai P. , Ritha W. [2023]. Scrutinization of a Neutrosophic Fuzzy Erlangian Queuing Model Using a Parametric Programming Technique. International Journal of Neutrosophic Science. (): 115-125. DOI: https://doi.org/10.54216/IJNS.210311
    Yasodai, P. Ritha, W. "Scrutinization of a Neutrosophic Fuzzy Erlangian Queuing Model Using a Parametric Programming Technique," International Journal of Neutrosophic Science, vol. , no. , pp. 115-125, 2023. DOI: https://doi.org/10.54216/IJNS.210311