International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 21 , Issue 2 , PP: 32-58, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

More on Open Maps and Closed Maps in Fuzzy Hypersoft Topological Spaces and Application in Covid-19 Diagnosis using Cotangent Similarity Measure

S. Aranganayagi 1 * , M. Saraswathi 2 , K. Chitirakala 3

  • 1 Department of Mathematics, Government Arts College, Dharmapuri, Tamil Nadu - 636 705, India; Department of Mathematics, Kandaswami Kandar’s College P-velur, Tamil Nadu - 638 182, India - (aranganayagi19@gmail.com)
  • 2 Department of Mathematics, Kandaswami Kandar’s College P-velur, Tamil Nadu - 638 182, India - (msmathsnkl@gmail.com)
  • 3 Department of Mathematics, M.Kumarasamy College of Engineering, Karur - 639 113; Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India - (chitrakalalaksana@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.210203

    Received: January 19, 2023 Revised: April 23, 2023 Accepted: May 05, 2023
    Abstract

    maps, fuzzy hypersoft pre open maps, fuzzy hypersoft δ open maps, fuzzy hypersoft δ pre open maps, fuzzy hypersoft δ semi open maps, fuzzy hypersoft e open maps, fuzzy hypersoft δα open maps, fuzzy hypersoft e∗ open maps and their respective closed maps in fuzzy hypersoft topological spaces. Also, we have discussed the properties of various forms of fuzzy hypersoft open and closed maps. Moreover, a new cotangent similarity measure for fuzzy hypersoft sets is introduced and an application in Covid-19 diagnosis is explained with an example.

    Keywords :

    uzzy hypersoft &delta , open maps , fuzzy hypersoft e open maps , fuzzy hypersoft &delta , closed maps , fuzzy hypersoft e closed maps , cotangent similarity measure

    References

    [1] A. Acikgoz and F. Esenbel, Neutrosophic soft δ-topology and neutrosophic soft compactness, AIP Conference Proceedings 2183, 030002, (2019).

    [2] M. Abbas, G. Murtaza and F. Smarandache, Basic operations on hypersoft sets and hypersoft point, Neutrosophic Sets and Systems, 35, (2020), 407-421.

    [3] M. Ahsan, M. Saeed and A.U. Rahman, A Theoretical and Analytical Approach for Fundamental Framework of Composite Mappings on Fuzzy Hypersoft Classes, Neutrosophic Sets and Systems, 45, (2021), 268-285.

    [4] D. Ajay and J. Joseline Charisma, Neutrosophic hypersoft topological spaces, Neutrosophic Sets and Systems, 40, (2021), 178-194.

    [5] D. Ajay, J. Joseline Charisma, N. Boonsatit, P. Hammachukiattikul and G. Rajchakit Neutrosophic semiopen hypersoft sets with an application to MAGDM under the COVID-19 scenario, Hindawi Journal of Mathematics, 2021, (2021), 1-16.

    [6] C. G. Aras and S. Bayramov, Neutrosophic Soft Continuity in Neutrosophic Soft Topological Spaces, Filomat, 34:10, (2020), 3495 - 3506.

    [7] V. Chandrasekar, D. Sobana and A. Vadivel, On Fuzzy e-open Sets, Fuzzy e-continuity and Fuzzy ecompactness in Intuitionistic Fuzzy Topological Spaces, Sahand Communications in Mathematical Analysis (SCMA), 12 (1) (2018), 131-153.

    [8] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.

    [9] E. Ekici, On e-open sets, DP⋆-sets and DPϵ⋆-sets and decomposition of continuity, The Arabian Journal for Science and Engineering, 33 (2A) (2008), 269-282.

    [10] M. N. Jafar, M. Saeed, M. Saqlain and M. Yang, Trigonometric similarity measures for neutrosophic hypersoft sets with application to renewable energy source selection, IEEE Access, 9, (2021), 129178- 129187.

    [11] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37, (1999), 19-31.

    [12] P. Revathi, K. Chitirakala and A. Vadivel, Soft e-separation axioms in neutrosophic soft topological spaces, Journal of Physics: Conference Series, 2070, (2021), 012028.

    [13] P. Revathi, K. Chitirakala and A. Vadivel, Neutrosophic Soft e-Open Maps, Neutrosophic Soft e-Closed Maps and Neutrosophic Soft e-Homeomorphisms in Neutrosophic Soft Topological Spaces, Springer Proceedings in Mathematics and Statistics, 384, (2022), 47-58.

    [14] S. Saha, Fuzzy δ-continuous mappings, Journal of Mathematical Analysis and Applications, 126 (1987), 130-142.

    [15] M. Saqlain, N. Jafar, S. Moin, M. Saeed and S. Broumi, Single and Multi-valued Neutrosophic Hypersoft set and Tangent Similarity Measure of Single valued Neutrosophic Hypersoft Set , Neutrosophic Sets and Systems , 32 , (2020) , 317-329.

    [16] V. Seenivasan and K. Kamala, Fuzzy e-continuity and fuzzy e-open sets, Annals of Fuzzy Mathematics and Informatics, 8 (2014), 141-148.

    [17] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl., 61, (2011), 1786-1799.

    [18] F. Smarandache, Extension of soft set to hypersoft set, and then to plithogenic hypersoft set , Neutrosophic Sets and Systems, 22, (2018), 168-170.

    [19] A. Vadivel and C. John Sundar, Neutrosophic δ-Open Maps and Neutrosophic δ-Closed Maps, International Journal of Neutrosophic Science, 13 (2) (2021), 66-74.

    [20] A. Vadivel and C. John Sundar, Nncδ-Open Sets, South East Asian Journal of Mathematics and Mathematical Sciences, 18 (3) (2022), 207-216.

    [21] A. Vadivel, M. Seenivasan and C. John Sundar, An introduction to δ-open sets in a neutrosophic topological spaces, Journal of Physics: Conference series, 1724 (2021), 012011.

    [22] A. Vadivel, P. Thangaraja and C. John Sundar, Neutrosophic e-Continuous Maps and Neutrosophic e- Irresolute Maps, Turkish Journal of Computer and Mathematics Education, 12 (1S) (2021), 369-375.

    [23] A. Vadivel, P. Thangaraja and C. John Sundar, Neutrosophic e-open maps, neutrosophic e-closed maps and neutrosophic e homeomorphisms in neutrosophic topological spaces, AIP Conference Proceedings, 2364 (2021), 020016.

    [24] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (3), (1965), 338–353.

    Cite This Article As :
    Aranganayagi, S.. , Saraswathi, M.. , Chitirakala, K.. More on Open Maps and Closed Maps in Fuzzy Hypersoft Topological Spaces and Application in Covid-19 Diagnosis using Cotangent Similarity Measure. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 32-58. DOI: https://doi.org/10.54216/IJNS.210203
    Aranganayagi, S. Saraswathi, M. Chitirakala, K. (2023). More on Open Maps and Closed Maps in Fuzzy Hypersoft Topological Spaces and Application in Covid-19 Diagnosis using Cotangent Similarity Measure. International Journal of Neutrosophic Science, (), 32-58. DOI: https://doi.org/10.54216/IJNS.210203
    Aranganayagi, S.. Saraswathi, M.. Chitirakala, K.. More on Open Maps and Closed Maps in Fuzzy Hypersoft Topological Spaces and Application in Covid-19 Diagnosis using Cotangent Similarity Measure. International Journal of Neutrosophic Science , no. (2023): 32-58. DOI: https://doi.org/10.54216/IJNS.210203
    Aranganayagi, S. , Saraswathi, M. , Chitirakala, K. (2023) . More on Open Maps and Closed Maps in Fuzzy Hypersoft Topological Spaces and Application in Covid-19 Diagnosis using Cotangent Similarity Measure. International Journal of Neutrosophic Science , () , 32-58 . DOI: https://doi.org/10.54216/IJNS.210203
    Aranganayagi S. , Saraswathi M. , Chitirakala K. [2023]. More on Open Maps and Closed Maps in Fuzzy Hypersoft Topological Spaces and Application in Covid-19 Diagnosis using Cotangent Similarity Measure. International Journal of Neutrosophic Science. (): 32-58. DOI: https://doi.org/10.54216/IJNS.210203
    Aranganayagi, S. Saraswathi, M. Chitirakala, K. "More on Open Maps and Closed Maps in Fuzzy Hypersoft Topological Spaces and Application in Covid-19 Diagnosis using Cotangent Similarity Measure," International Journal of Neutrosophic Science, vol. , no. , pp. 32-58, 2023. DOI: https://doi.org/10.54216/IJNS.210203