Volume 21 , Issue 2 , PP: 20-31, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
M. Anandhkumar 1 * , B. Kanimozhi 2 , S. M.Chithra 3 , V. Kamalakannan 4 , Broumi Said 5
Doi: https://doi.org/10.54216/IJNS.210202
In this article, we discuss various Inverses Minimum norm g-inverse, Least square g-inverse, Moore Penrose inverse, Group Inverse, Generalized Symmetric Neutrosophic Fuzzy Matrices. Also we describes secondary k-column symmetric Neutrosophic fuzzy matrices are produced. It is discussed how s-k-column symmetric, s-column symmetric, k-column symmetric, and column symmetric Neutrosophic fuzzy matrices relate to one another. For an Neutrosophic fuzzy matrices to be an s-k-column symmetric Neutrosophic fuzzy matrices, necessary and sufficient requirements are identified.
Neutrosophic fuzzy matrices , Minimum norm g-inverse , Least square g-inverse , Moore Penrose  , inverse , Group Inverse , Column symmetric Neutrosophic fuzzy matrices.
[1] Ben Israel, A.and Greville, T.N.E(1974). Generalized inverses:Theory and Application,John Wiley,New York.
[2] Kim K.H and Roush ,F.W.(1980) ‘’Generalized fuzzy matrices’’ Fuzzy set and sys 4:293-315
[3] Cho, H.H(1993) ‘’Regular matrix in the semi group of all matrices ‘’ Lin.Alg.App.191:151-163
[4] Cho, H.H(1999) ‘’Regular fuzzy matrices and fuzzy equation ‘’Fuzzy set sys 105:445-451
[5] Sriram.S (2003). On generalized inverses of fuzzy matrices Ph.D Thesis Annamalai University.
[6] Inbam.C (2004) ‘’Drazin inverse of fuzzy matrices’’ Annamalai University Science Journal pp 1-8
[7] Inbam.C (2004) Contribution to the study on regular fuzzy matrices. P.hd Thesis Annamalai University
[8] Meenakshi AR, Fuzzy Matrix: Theory and Applications, MJP Publishers, Chennai, 2008.
[9] Meenakshi AR and Jaya Shree .D, On k-Range symmetric matrices, Proceedings of the National conference on
Algebra and Graph Theory, MS University, 2009, 58-67
[10] Atanassov K., , Intuitionistic Fuzzy Sets, Fuzzy Sets and System. (1983), 20, pp. 87- 96.
[11] Zadeh L.A., Fuzzy Sets, Information and control.,(1965),,8, pp. 338-353.
[12] M.Anandhkumar 1*, V.Kamalakannan2, S.M.Chithra3 , Broumi Said4, Pseudo Similarity of Neutrosophic Fuzzy matrices, (2023), International Journal of Neutrosophic Science, Volume 20 , Issue 4, PP: 191-196 ,