Volume 21 , Issue 1 , PP: 121-133, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
Aiyared Iampan 1 * , S. Yamunadevi 2 , P. Maragatha Meenakshi 3 , N. Rajesh 4
Doi: https://doi.org/10.54216/IJNS.210111
In this paper, we introduce the concept of neutrosophic hesitant fuzzy UP (BCC)-filters of UP (BCC)-algebras. The characteristic neutrosophic hesitant fuzzy UP (BCC)-filters have also been studied. The relationship between neutrosophic hesitant fuzzy UP (BCC)-filters and their level subsets is provided. The Cartesian product of neutrosophic hesitant fuzzy UP (BCC)-filters is also supplied. Finally, we also find the property of the homomorphic pre-image of neutrosophic hesitant fuzzy UP (BCC)-filters.
UP-algebra , neutrosophic hesitant fuzzy filter , level subset , Cartesian product , homomorphic pre-image.
[1] B. Ahmad, A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst., vol. 2009, Article ID: 586507, 6 pages, 2009.
[2] M. Atef, M. I. Ali, T. Al-shami, Fuzzy soft covering based multi-granulation fuzzy rough sets and their bapplications, Comput. Appl. Math., vol. 40, no. 4, Article number: 115, 2021.
[3] N. Caˇgman, S. Enginoˇglu, F. Citak, Fuzzy soft set theory and its application, Iran. J. Fuzzy Syst., vol. 8, no. 3, pp. 137-147, 2011.
[4] T. Guntasow, S. Sajak, A. Jomkham, A. Iampan, Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math. Soc., vol. 23, no. 2, pp. 1-19, 2017.
[5] Y. Huang, BCI-algebra, Science Press, Beijing, China, 2006.
[6] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top., vol. 5, no. 1, pp. 35-54, 2017.
[7] A. Iampan, S. Yamunadevi, P. Maragatha Meenakshi, N. Rajesh, A novel extension of hesitant fuzzy sets on UP (BCC)-algebras: neutrosophic hesitant fuzzy sets, Int. J. Neutrosophic Sci., vol. 20, no. 4, pp. 78-92, 2023.
[8] Y. B. Jun, S. S. Ahn, G. Muhiuddin, Hesitant fuzzy soft subalgebra and ideal in BCI/BCK-algebras, Sci. World J., vol. 2014, Article ID: 763929, 7 pages, 2014.
[9] Y. B. Jun, B. Brundha, N. Rajesh, R. K. Bandaru, (3, 2)-Fuzzy UP (BCC)-subalgebras and (3, 2)-fuzzy UP (BCC)-filters, J. Mahani Math. Res. Cent., vol. 11, no. 3, pp. 1-14, 2022.
[10] Y. B. Jun, S.-Z. Song, Hesitant fuzzy set theory applied to filters in MTL-algebras, Honam Math. J., vol. 36, no. 4, pp. 813-830, 2014.
[11] Y. Komori, The class of BCC-algebras is not a variety, Math. Japon., vol. 29, no. 3, pp. 391-394, 1984.
[12] P. Mosrijai, W. Kamti, A. Satirad, A. Iampan, Hesitant fuzzy sets on UP-algebras, Konuralp J. Math., vol. 5, no. 2, pp. 268-280, 2017.
[13] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., vol. 12, no. 6, pp. 739-756, 2016.
[14] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., vol. 25, no. 6, pp. 529-539, 2010.
[15] V. Torra, Y. Narukawa, On hesitant fuzzy sets and decision, 18th IEEE Int. Conf. Fuzzy Syst., Jeju Island, pp. 1378-1382, 2009.
[16] L. A. Zadeh, Fuzzy sets, Inf. Control, vol. 8, no. 3, pp. 338-353, 1965.
[17] B. Zhu, Z. Xu, M. Xia, Dual hesitant fuzzy sets, J. Appl. Math., vol. 2012, Article ID: 879629, 13 pages, 2012.