Volume 20 , Issue 4 , PP: 223-231, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
S. Manivasan 1 * , P. Kalidass 2
Doi: https://doi.org/10.54216/IJNS.200420
We introduce BMBJ-neutrosophic sets and subalgebras as a generalisation of neutrosophic sets, and examine their application and related features to KU-algebras in this paper. We give various BMBJ-neutrosophic subalgebra characterizations, and we suggest a new BMBJ-neutrosophic subalgebra by utilizing a BMBJneutrosophic subalgebra of aKU-algebra. We look at the homomorphic inverse image of BMBJ-neutrosophic subalgebra and BMBJ-neutrosophic subalgebra translation.
BMBJ-N set , BMBJ-NSA , BMBJ-neutrosophic S-extension.
[1] Bijan Davvaz, Samy M. Mostafa and Fatema F. Kareem, Neutrosophic ideals of neutrosophic KUalgebras, GU J Sci., 30 (4), (2017), 463-472.
[2] M. Mohseni Takallo, R. A. Borzooei and Young Bae Jun, MBJ-neutrosophic structures and its applications in BCK/BCI-algebras, Neutrosophic Sets and Systems, 23, (2018), 72-84.
[3] S. M. Mostafa, M. A. Abd-Elnaby and M. M. M. Yousef, Fuzzy ideals of KU-algebras, International Math Forum., 6 (63) (2011) 3139-3149.
[4] C. Prabpayak and U. Leerawat, On ideals and congruence in KU-algebras, Scientia Magna Journal, 5 (1) (2009), 54-57.
[5] C. Prabpayak and U. Leerawat, On isomorphisms of KU-algebras, Scientia Magna Journal, 5 (3) (2009), 25-31.
[6] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning, Ann Arbor, Michigan, USA, 105 (1998). http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf(last edition online).
[7] F. Smarandache, A unifying field in logics. Neutrosophy: Neutrosophic probabilFy, set and logic, Rehoboth: American Research Press (1999).
[8] F. Smarandache, Neutrosophic set, a generalization of intuitionistic fuzzy sets, International Journal of Pure and Applied Mathematics, 24 (5) (2005), 287-297.
[9] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (3) (1965), 338-353.