International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 20 , Issue 4 , PP: 210-222, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Neutrosophic G* -Closed Sets in Neutrosophic Topological Spaces

Wadei Faris AL-Omeri 1 *

  • 1 Department of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid, Jordan - (wadeimoon1@hotmail.com)
  • Doi: https://doi.org/10.54216/IJNS.200417

    Received: December 27, 2022 Accepted: April 15, 2023
    Abstract

    A neutrosophic set is a mathematical approach that helps with challenges involving data that is indeterminate, imprecise, or inconsistent. The goal of this manuscript is to present the notion of neutrosophic g*-closed sets and neutrosophic g*-open sets. In this situation, we prove various neutrosophic generalized theorems. The findings support previous methodologies in the literature and are backed up by various examples and an application.

    Keywords :

    Neutrosophic g* continuity , Neutrosophic Set , Neutrosophic g*-closed sets ,Neutrosophic Topology ,   , Neutrosophic g* continuity mapping , Generalized Neutrosophic Set , Neutrosophic continuity mapping.

    References

    [1] M. Scheepers, Combinatorics of open covers i: Ramsey theory, Topology Appl. vol. 69, pp. 31–62, 1996.

    [2] J. Dontchev, Survey on preopen sets, proc. Yatsushiro Topological Conf. pp. 1–8, 1998.

    [3] A. A. El-Aziz, On generalized forms of compactness, Masters thesis, Faculty of Science, Tanta University, Egypt.

    [4] D.Jayanthi,α Generalized closed Sets in Neutrosophic Topological Spaces, International Journal of Mathematics Trends and Technology (IJMTT)- Special Issue ICRMIT March. Infinite Study, (2018).

    [5] A.Mary Margaret, and M.Trinita Pricilla.,Neutrosophic Vague Generalized Pre-closed Sets in Neutrosophic Vague Topological Spaces,International Journal of Mathematics And its Applications,Vol. 5, Issue 4-E, pp. 747–759,2017.

    [6] V.K.Shanthi.V.K.,S.Chandrasekar.S, K.SafinaBegam, Neutrosophic Generalized Semi closed Sets in Neutrosophic Topological Spaces, International Journal of Research in Advent Technology, Vol.(ii),6, No.7,July pp. 1739–1743,2018.

    [7] Renu Thomas, and S. Anila, On Neutrosophic Semi-preopen Sets and Semi-preclosed Sets in a Neutrosophic Topological Space, International Journal of Scientific Research in Mathematical and Statistical Sciences,Vol. 5, No. 5,pp. 138–143, 2018.

    [8] Narmatha, S., E. Glory Bebina, and R. Vis.hnu Priyaa. On πgβ–Closed Sets and Mappings in Neutrosophic Topological Spaces. International Journal of Innovative Technology and Exploring Engineering (IJITEE) 8.125, pp. 505–510, 2019.

    [9] W. F. Al-Omeri, F. Smarandache, New Neutrosophic Sets via Neutrosophic Topological Spaces, Brussels (Belgium): Pons, pp. 189–209, 2017.

    [10] A. A. Salama, Said Broumi, S. A. Alblowi, Introduction to Neutrosophic Topological Spatial Region, Possible Application to GIS Topological Rules, I.J. Information

    [11] R. Dhavaseelan, and S. Jafari. Generalized Neutrosophic closed sets, New trends in Neutrosophic theory and applications Volume II-261-273,(2018) R. Dhavaseelan, S. Jafari and md. Hanif page, Neutrosophic generalized alpha-contra-continuity, creat. math. inform Vol. 2334, pp.133–139, 2018.

    [12] W. Al-Omeri, and S¿ Jafari. On Generalized Closed Sets and Generalized Pre-Closed Sets in Neutrosophic Topological Spaces, Mathematics, pp. 1–12, 2019.

    [13] D. Coker, An introduction to intuitionistic fuzzy topological space, Fuzzy Sets and Systems, Vol. 88, No. 1, pp. 81–89, 1997.

    [14] C. L. Chang, Fuzzy topological spaces, Journal of Mathematical Analysis and Applications Vol. 24, No. 1 , pp. 182–190, 1968.

    [15] F. Smarandache, Neutrosophic Probability, Set, and Logic, ProQuest Information, Learning, Ann Arbor., Michigan, USA,, pp. 105, 1998.

    [16] M. A. A. Shumrani, F. Smarandache, Introduction to non-standard neutrosophic topology, Symmetry Vol. 11 (0), pp. 1-14,2019, basel, Switzerland. doi:10.3390/sym11050000.

    [17] K. Atanassov, Intuitionistic fuzzy sets, VII ITKRs Session, (Deposed in Central Sci.- Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulg.), 1984.

    [18] C. Maheswari, and S. Chandrasekar. Neutrosophic gb-closed Sets and Neutrosophic gb-Continuity. Infinite Study, 2020.

    [19] M. Parimala , M. Karthika , Florentin Smarandache , Said Broumi, On αω-closed sets and its connectedness in terms of neutrosophic topological spaces, International Journal of Neutrosophic Science, Vol. 2 , No. 2 , (2020) : 82-88 (Doi : https://doi.org/10.54216/IJNS.020204)

    [20] A. Vadivel , C. John Sundar, Neutrosophic δ-Open Maps and Neutrosophic δ-Closed Maps, International Journal of Neutrosophic Science, Vol. 13 , No. 2, pp. 66–74, 2021 (Doi : https://doi.org/10.54216/IJNS.130203)

    [21] P. Basker , Broumi Said, NΨ♯ 0α and NΨ♯ 1α-spaces in Neutrosophic Topological Spaces, International Journal of Neutrosophic Science, Vol. 16 , No. 1 , pp.09–15, 2021 (Doi : https://doi.org/10.54216/IJNS.160101)

    [22] Acikgoz, Ahu, and Ferhat Esenbel. A study on connectedness in neutrosophic opological spaces. AIP Conference Proceedings. Vol. 2334. No. 1. AIP Publishing LLC, 2021.

    Cite This Article As :
    Faris, Wadei. Neutrosophic G* -Closed Sets in Neutrosophic Topological Spaces. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 210-222. DOI: https://doi.org/10.54216/IJNS.200417
    Faris, W. (2023). Neutrosophic G* -Closed Sets in Neutrosophic Topological Spaces. International Journal of Neutrosophic Science, (), 210-222. DOI: https://doi.org/10.54216/IJNS.200417
    Faris, Wadei. Neutrosophic G* -Closed Sets in Neutrosophic Topological Spaces. International Journal of Neutrosophic Science , no. (2023): 210-222. DOI: https://doi.org/10.54216/IJNS.200417
    Faris, W. (2023) . Neutrosophic G* -Closed Sets in Neutrosophic Topological Spaces. International Journal of Neutrosophic Science , () , 210-222 . DOI: https://doi.org/10.54216/IJNS.200417
    Faris W. [2023]. Neutrosophic G* -Closed Sets in Neutrosophic Topological Spaces. International Journal of Neutrosophic Science. (): 210-222. DOI: https://doi.org/10.54216/IJNS.200417
    Faris, W. "Neutrosophic G* -Closed Sets in Neutrosophic Topological Spaces," International Journal of Neutrosophic Science, vol. , no. , pp. 210-222, 2023. DOI: https://doi.org/10.54216/IJNS.200417