International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 20 , Issue 1 , PP: 165-173, 2023 | Cite this article as | XML | Html | PDF | Review Article

A Review on Metaheuristic Algorithms with Neutrosophic Sets for Image Enhancement

M. A. El-Shorbagy 1 * , Hossam A. Nabwey 2 , Mustafa Inc 3 , Mostafa M. A. Khater 4

  • 1 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia - (ma.hassan@psau.edu.sa)
  • 2 Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt - (eng_hossam21@yahoo.com)
  • 3 Science Faculty, Firat University, 23119, Elazig, Turkey - (minc@firat.edu.tr)
  • 4 School of Medical Informatics and Engineering, Xuzhou Medical University, 209 Tongshan Road, 221004, Xuzhou, Jiangsu Province, PR China - (mostafa.khater2024@yahoo.com)
  • Doi: https://doi.org/10.54216/IJNS.200113

    Received: December 20, 2022 Accepted: January 10, 2023
    Abstract

    Breast cancer has emerged as a major killer in recent years. With a yearly rate of about one million new cases, it is the most prevalent among women in the world's poorest countries. Grading of cellular images has emerged as a key prognostic factor during the past decade. Neutrosophic sets used to enhance medical images in the last decade. Neutrosophic sets can overcome the uncertainty and indeterminacy of information. In recent years, metaheuristics have integrated with neutrosophic sets. Because of their adaptability, simplicity, and task independence, metaheuristics have been extensively employed to tackle many difficult non-linear optimization problems. The purpose of this research is to investigate several approaches to image classification for breast cancer pictures. This includes the use of metaheuristics and neutrosophic sets for optimization and image enhancement. This research was undertaken to better understand the current state of the art in breast cancer identification from medical pictures and to provide insight into the difficulties that lie ahead. We hope that this will encourage academics to investigate hitherto understudied facets of breast cancer identification.

    Keywords :

    Neutrosophic Sets , Metaheuristics , Uncertainty , Breast Cancer , Image Enhancement

    References

    [1]  D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck, “Deep learning for identifying metastatic 

    breast cancer,” arXiv preprint arXiv:1606.05718, 2016.

    [2]  A.A. Salama , Mohamed Fazaa , Mohamed Yahya , M. Kazim, A Suggested Diagnostic System of Corona 

    Virus  based  on  the  Neutrosophic  Systems  and  Deep  Learning,  International  Journal  of  Neutrosophic 

    Science, Vol. 9 , No. 1 , (2020) : 54-59 

    [3]  Z.  Han,  B.  Wei,  Y.  Zheng,  Y.  Yin,  K.  Li,  and  S.  Li,  “Breast  cancer  multi -classification  from 

    histopathological images with structured deep learning model,” Scientific reports, vol. 7, no. 1, pp. 1–10, 

    2017.

    [4]  A. Yala, C. Lehman, T. Schuster, T. Portnoi, and R. Barzilay,  “A deep learning mammography-based 

    model for improved breast cancer risk prediction,” Radiology, vol. 292, no. 1, pp. 60–66, 2019.

    [5]  S. Khan, N. Islam, Z. Jan, I. U. Din, and J. J. P. C. Rodrigues, “A novel deep learning based framework 

    for the detection and classification of breast cancer using transfer learning,”  Pattern Recognition Letters, 

    vol. 125, pp. 1–6, 2019.

    [6]  L. Shen, L. R. Margolies, J. H. Rothstein, E. Fluder, R. McBride, and W. Sieh, “Deep learning to improve 

    breast cancer detection on screening mammography,” Scientific reports, vol. 9, no. 1, pp. 1–12, 2019.

    [7]  S. J. Mambou, P. Maresova, O. Krejcar, A. Selamat, and K. Kuca, “Breast cancer detection using infrared 

    thermal imaging and a deep learning model,” Sensors, vol. 18, no. 9, p. 2799, 2018.

    [8]  K. Yu, L. Tan, L. Lin, X. Cheng, Z. Yi, and T. Sato, “Deep-learning-empowered breast cancer auxiliary 

    diagnosis for 5GB remote E-health,” IEEE Wireless Communications, vol. 28, no. 3, pp. 54–61, 2021.

    [9]  T. Mahmood, J. Li, Y. Pei, F. Akhtar, A. Imran, and K. U. Rehman, “A brief survey on breast cancer 

    diagnostic with deep learning schemes using multi-image modalities,”  IEEE Access, vol. 8, pp. 165779–

    165809, 2020.

    [10]  B. E. Bejnordi  et al., “Diagnostic assessment of deep learning algorithms fo r detection of lymph node 

    metastases in women with breast cancer,” Jama, vol. 318, no. 22, pp. 2199–2210, 2017.

    [11]  D. F. Steiner et al., “Impact of deep learning assistance on the histopathologic review of lymph nodes for 

    metastatic breast cancer,” The American journal of surgical pathology, vol. 42, no. 12, p. 1636, 2018.

    [12]  J. Xie, R. Liu, J. Luttrell IV, and C. Zhang, “Deep learning based analysis of histopathological images of 

    breast cancer,” Frontiers in genetics, vol. 10, p. 80, 2019.

    [13]  Y. Yari, T. V Nguyen, and H. T. Nguyen, “Deep learning applied for histological diagnosis of breast 

    cancer,” IEEE Access, vol. 8, pp. 162432–162448, 2020.

    [14]  G. Chugh, S. Kumar, and N. Singh, “Survey on machine learning and deep learning applications in breast 

    cancer diagnosis,” Cognitive Computation, vol. 13, no. 6, pp. 1451–1470, 2021.

    [15]  L.-Q. Zhou et al., “Lymph node metastasis prediction from primary breast cancer US images using deep 

    learning,” Radiology, vol. 294, no. 1, pp. 19–28, 2020.

    [16]  G. Hamed, M. A. E.-R. Marey, S. E.-S. Amin, and M. F. Tolba, “Deep learning in breast cancer detection 

    and classification,” in The International Conference on Artificial Intelligence and Computer Vision, 2020, 

    pp. 322–333.

    [17]  J.  Bai,  R.  Posner,  T.  Wang,  C.  Yang,  and  S.  Nabavi,  “Applying  deep  learning  in  digital  breast 

    tomosynthesis  for  automatic  breast  cancer  detection:  A  review,”  Medical  image  analysis,  vol.  71,  p. 

    102049, 2021.

    [18]  Sundus Naji AL-Aziz , Reem Atassi , Abd Al-Aziz Hosni El-Bagoury, Hybridization of Neutrosophic 

    Logic  with  Quasi-Oppositional  Chimp  Optimization  based  Data  Classification  Model,  International 

    Journal of Neutrosophic Science, Vol. 18 , No. 3 , (2022) : 125 -134

    [19]  S. Bourouis, S. S. Band, A. Mosavi, S. Agrawal, and M. Hamdi,  “Meta-heuristic algorithm-tuned neural 

    network for breast cancer diagnosis using ultrasound images,” Frontiers in Oncology, vol. 12, p. 834028, 

    2022.

    [20]  O. N. Oyelade and A. E. Ezugwu, “Characterization of abnormalities in breast cancer images using natureā€

    inspired metaheuristic optimized convolutional neural networks model,”  Concurrency and Computation: 

    Practice and Experience, vol. 34, no. 4, p. e6629, 2022.

    [21]  S. Chakraborty, S. Chatterjee, A. Chatterjee, K. Mali, S. Goswami, and S. Sen, “Automated breast cancer 

    identification  by  analyzing  histology  slides  using  metaheuristic  supported  supervised  classification 

    coupled with bag-of-features,” in  2018 Fourth International Conference on Research in Computational 

    Intelligence and Communication Networks (ICRCICN), 2018, pp. 81–86.

    [22]  G. I. Sayed, A. Darwish, A. E. Hassanien, and J.-S. Pan, “Breast cancer diagnosis approach based on metaheuristic optimization algorithm inspired by the bubble-net hunting strategy of whales,” in  International 

    conference on genetic and evolutionary computing, 2016, pp. 306–313.

    [23]  H.  MotieGhader,  Y.  Masoudi-Sobhanzadeh,  S.  H.  Ashtiani,  and  A.  Masoudi-Nejad,  “mRNA  and 

    microRNA  selection  for  breast  cancer  molecular  subtype  stratification  using  meta-heuristic  based 

    algorithms,” Genomics, vol. 112, no. 5, pp. 3207–3217, 2020.

    [24]  S. R. S. Chakravarthy, N. Bharanidharan, and H. Rajaguru, “Deep Learning-based Metaheuristic Weighted 

    K-Nearest Neighbor Algorithm for the Severity Classification of Breast Cancer,” IRBM, p. 100749, 2023.

    [25]  M. J. Hosseinpoor, H. Parvin, S. Nejatian, and V. Rezaie, “Gene regulatory elements extraction in breast 

    cancer by Hi-C data using a meta-heuristic method,” Russian Journal of Genetics,  vol. 55, no. 9, pp. 1152–

    1164, 2019.

    [26]  T. A. Rashid, P. Fattah, and D. K. Awla, “Using accuracy measure for improving the training of LSTM 

    with metaheuristic algorithms,” Procedia computer science, vol. 140, pp. 324–333, 2018.

    [27]  K. Rezaee, A. Rezaee, N. Shaikhi, and J. Haddadnia, “Multi-mass breast cancer classification based on 

    hybrid descriptors and memetic meta-heuristic learning,”  SN Applied Sciences, vol. 2, no. 7, pp. 1–19, 

    2020.

    [28]  Muhammad  Saqlain  ,  Florentin  Smarandache,  Octagonal  Neutrosophic  Number:  Its  Different 

    Representations, Properties, Graphs and De-neutrosophication with the application of Personnel Selection, 

    International Journal of Neutrosophic Science, Vol. 8 , No. 1 , (2020) : 19 -33 

    [29]  N. El-Hefenawy, M. A. Metwally, Z. M. Ahmed, and I. M. El-Henawy, “A review on the applications of 

    neutrosophic sets,” Journal of Computational and Theoretical Nanoscience, vol. 13, no. 1, pp. 936–944, 

    2016.

    [30]  F.  Smarandache,  A  unifying  field  in  logics:  neutrosophic  logic.  Neutrosophy,  neutrosophic  set, 

    neutrosophic  probability:  neutrsophic  logic.  Neutrosophy,  neutrosophic  set,  neutrosophic  probability. 

    Infinite Study, 2005.

    [31]  P. Majumdar and S. K. Samanta, “On similarity and entropy of neutrosophic sets,”  Journal of Intelligent 

    & Fuzzy Systems, vol. 26, no. 3, pp. 1245–1252, 2014.

    [32]  Yaser  Ahmad  Alhasan,  Concepts  of  Neutrosophic  Complex  Numbers,  International  Journal  of 

    Neutrosophic Science, Vol. 8 , No. 1 , (2020) : 09-18

    [33]  A. A. Salama and S. A. Alblowi, “Neutrosophic set and neutrosophic topological spaces,” IOSR Journal 

    of Mathematics (IOSR-JM), vol. 3, no. 4, 2012.

    [34]  S. Broumi, F. Smarandache, and M. Dhar, Rough neutrosophic sets. Infinite Study, 2014.

    [35]  M. Shehab, L. Abualigah, H. Al Hamad, H. Alabool, M. Alshinwan, and A. M. Khasawneh, “Moth–flame 

    optimization algorithm: variants and applications,”  Neural Computing and Applications, vol. 32, no. 14, 

    pp. 9859–9884, 2020.

    [36]  Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced Moth-flame optimizer with mutation 

    strategy for global optimization,” Information Sciences, vol. 492, pp. 181–203, 2019.

    [37]  S.  Mirjalili,  A.  H.  Gandomi,  S.  Z.  Mirjalili,  S.  Saremi,  H.  Faris,  and  S.  M.  Mirjalili,  “Salp  Swarm 

    Algorithm: A bio-inspired optimizer for engineering design problems,” Advances in engineering software, 

    vol. 114, pp. 163–191, 2017.

    [38]  L.  Abualigah,  M.  Shehab,  M.  Alshinwan,  and  H.  Alabool,  “Salp  swarm  algorithm:  a  comprehensive 

    survey,” Neural Computing and Applications, vol. 32, no. 15, pp. 11195–11215, 2020.

    [39]  X.-S.  Yang  and  X.  He,  “Firefly  algorithm:  recent  advances  and  applications,”  arXiv  preprint 

    arXiv:1308.3898, 2013.

    [40]  X.-S. Yang and A. Slowik, “Firefly algorithm,” in Swarm Intelligence Algorithms, CRC Press, 2020, pp. 

    163–174.

    [41]  G. I. Sayed and A. E. Hassanien, “Moth-flame swarm optimization with neutrosophic sets for automatic

    mitosis detection in breast cancer histology images,”  Applied Intelligence, vol. 47, no. 2, pp. 397–408, 

    2017.

    [42]  T.  S.  Umamaheswari  and  P.  Sumathi,  “Enhanced  firefly  algorithm  (EFA)  based  gene  selection  and 

    adaptive  neuro  neutrosophic  inference  system  (ANNIS)  prediction  model  for  detection  of  circulating 

    tumor cells (CTCs) in breast cancer analysis,” Cluster Computing, vol. 22, no. 6, pp. 14035–14047, 2019.

    Cite This Article As :
    A., M.. , A., Hossam. , Inc, Mustafa. , M., Mostafa. A Review on Metaheuristic Algorithms with Neutrosophic Sets for Image Enhancement. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 165-173. DOI: https://doi.org/10.54216/IJNS.200113
    A., M. A., H. Inc, M. M., M. (2023). A Review on Metaheuristic Algorithms with Neutrosophic Sets for Image Enhancement. International Journal of Neutrosophic Science, (), 165-173. DOI: https://doi.org/10.54216/IJNS.200113
    A., M.. A., Hossam. Inc, Mustafa. M., Mostafa. A Review on Metaheuristic Algorithms with Neutrosophic Sets for Image Enhancement. International Journal of Neutrosophic Science , no. (2023): 165-173. DOI: https://doi.org/10.54216/IJNS.200113
    A., M. , A., H. , Inc, M. , M., M. (2023) . A Review on Metaheuristic Algorithms with Neutrosophic Sets for Image Enhancement. International Journal of Neutrosophic Science , () , 165-173 . DOI: https://doi.org/10.54216/IJNS.200113
    A. M. , A. H. , Inc M. , M. M. [2023]. A Review on Metaheuristic Algorithms with Neutrosophic Sets for Image Enhancement. International Journal of Neutrosophic Science. (): 165-173. DOI: https://doi.org/10.54216/IJNS.200113
    A., M. A., H. Inc, M. M., M. "A Review on Metaheuristic Algorithms with Neutrosophic Sets for Image Enhancement," International Journal of Neutrosophic Science, vol. , no. , pp. 165-173, 2023. DOI: https://doi.org/10.54216/IJNS.200113